scholarly journals Genomic and transcriptomic somatic alterations of hepatocellular carcinoma in non-cirrhotic livers

2021 ◽  
Author(s):  
Zachary L Skidmore ◽  
Jason Kunisaki ◽  
Yiing Lin ◽  
Kelsy C Cotto ◽  
Erica K Barnell ◽  
...  

Background: Liver cancer is the second leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) risk factors include chronic hepatitis, cirrhosis, and alcohol abuse, whereby tumorigenesis is induced through inflammation and subsequent fibrotic response. However, a subset of HCC arises in non-cirrhotic livers. We characterized the genomic and transcriptomic landscape of non-cirrhotic HCC to identify features underlying the disease's development and progression. Methods: Whole genome and transcriptome sequencing was performed on 30 surgically resectable tumors comprised of primarily of non-cirrhotic HCC and adjacent normal tissue. Using somatic variants, capture reagents were created and employed on an additional 87 cases of mixed cirrhotic/non-cirrhotic HCC. Cases were analyzed to identify viral integrations, single nucleotide variants (SNVs), insertions and deletions (INDELS), copy number variants, loss of heterozygosity, gene fusions, structural variants, and differential gene expression. Results: We detected 3,750 SNVs/INDELS and extensive CNVs and expression changes. Recurrent TERT promoter mutations occurred in >52% of non-cirrhotic discovery samples. Frequently mutated genes included TP53, CTNNB1, and APOB. Cytochrome P450 mediated metabolism was significantly downregulated. Structural variants were observed at MACROD2, WDPCP, and NCKAP5 in >20% of samples. Furthermore, NR1H4 fusions involving gene partners EWSR1, GNPTAB, and FNIP1 were detected and validated in 2 non-cirrhotic samples. Conclusion: Genomic analysis can elucidate mechanisms that may contribute to non-cirrhotic HCC tumorigenesis. The comparable mutational landscape between cirrhotic and non-cirrhotic HCC supports previous work suggesting a convergence at the genomic level during disease progression. It is therefore possible genomic-based treatments can be applied to both HCC subtypes with progressed disease.

2021 ◽  
Vol 147 (4) ◽  
pp. 1007-1017
Author(s):  
Branka Powter ◽  
Sarah A. Jeffreys ◽  
Heena Sareen ◽  
Adam Cooper ◽  
Daniel Brungs ◽  
...  

AbstractThe TERT promoter (pTERT) mutations, C228T and C250T, play a significant role in malignant transformation by telomerase activation, oncogenesis and immortalisation of cells. C228T and C250T are emerging as important biomarkers in many cancers including glioblastoma multiforme (GBM), where the prevalence of these mutations is as high as 80%. Additionally, the rs2853669 single nucleotide polymorphism (SNP) may cooperate with these pTERT mutations in modulating progression and overall survival in GBM. Using liquid biopsies, pTERT mutations, C228T and C250T, and other clinically relevant biomarkers can be easily detected with high precision and sensitivity, facilitating longitudinal analysis throughout therapy and aid in cancer patient management.In this review, we explore the potential for pTERT mutation analysis, via liquid biopsy, for its potential use in personalised cancer therapy. We evaluate the relationship between pTERT mutations and other biomarkers as well as their potential clinical utility in early detection, prognostication, monitoring of cancer progress, with the main focus being on brain cancer.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2160
Author(s):  
Jeong-Won Jang ◽  
Jin-Seoub Kim ◽  
Hye-Seon Kim ◽  
Kwon-Yong Tak ◽  
Soon-Kyu Lee ◽  
...  

Telomerase reverse transcriptase (TERT) mutations are reportedly the most frequent somatic genetic alterations in hepatocellular carcinoma (HCC). An integrative analysis of TERT-telomere signaling during hepatocarcinogenesis is lacking. This study aimed to investigate the clinicopathological association and prognostic value of TERT gene alterations and telomere length in HCC patients undergoing hepatectomy as well as transarterial chemotherapy (TACE). TERT promoter mutation, expression, and telomere length were analyzed by Sanger sequencing and real-time PCR in 305 tissue samples. Protein–protein interaction (PPI) analysis was performed to identify a set of genes that physically interact with TERT. The PPI analysis identified eight key TERT-interacting genes, namely CCT5, TUBA1B, mTOR, RPS6KB1, AKT1, WHAZ, YWHAQ, and TERT. Among these, TERT was the most strongly differentially expressed gene. TERT promoter mutations were more frequent, TERT expression was significantly higher, and telomere length was longer in tumors versus non-tumors. TERT promoter mutations were most frequent in HCV-related HCCs and less frequent in HBV-related HCCs. TERT promoter mutations were associated with higher TERT levels and longer telomere length and were an independent predictor of worse overall survival after hepatectomy. TERT expression was positively correlated with tumor differentiation and stage progression, and independently predicted shorter time to progression after TACE. The TERT-telomere network may have a crucial role in the development and progression of HCC. TERT-telomere abnormalities might serve as useful biomarkers for HCC, but the prognostic values may differ with tumor characteristics and treatment.


Author(s):  
Jacqueline Neubauer ◽  
Shouyu Wang ◽  
Giancarlo Russo ◽  
Cordula Haas

AbstractSudden unexplained death (SUD) takes up a considerable part in overall sudden death cases, especially in adolescents and young adults. During the past decade, many channelopathy- and cardiomyopathy-associated single nucleotide variants (SNVs) have been identified in SUD studies by means of postmortem molecular autopsy, yet the number of cases that remain inconclusive is still high. Recent studies had suggested that structural variants (SVs) might play an important role in SUD, but there is no consensus on the impact of SVs on inherited cardiac diseases. In this study, we searched for potentially pathogenic SVs in 244 genes associated with cardiac diseases. Whole-exome sequencing and appropriate data analysis were performed in 45 SUD cases. Re-analysis of the exome data according to the current ACMG guidelines identified 14 pathogenic or likely pathogenic variants in 10 (22.2%) out of the 45 SUD cases, whereof 2 (4.4%) individuals had variants with likely functional effects in the channelopathy-associated genes SCN5A and TRDN and 1 (2.2%) individual in the cardiomyopathy-associated gene DTNA. In addition, 18 structural variants (SVs) were identified in 15 out of the 45 individuals. Two SVs with likely functional impairment were found in the coding regions of PDSS2 and TRPM4 in 2 SUD cases (4.4%). Both were identified as heterozygous deletions, which were confirmed by multiplex ligation-dependent probe amplification. In conclusion, our findings support that SVs could contribute to the pathology of the sudden death event in some of the cases and therefore should be investigated on a routine basis in suspected SUD cases.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Leandro de Araújo Lima ◽  
Ana Cecília Feio-dos-Santos ◽  
Sintia Iole Belangero ◽  
Ary Gadelha ◽  
Rodrigo Affonseca Bressan ◽  
...  

Abstract Many studies have attempted to investigate the genetic susceptibility of Attention-Deficit/Hyperactivity Disorder (ADHD), but without much success. The present study aimed to analyze both single-nucleotide and copy-number variants contributing to the genetic architecture of ADHD. We generated exome data from 30 Brazilian trios with sporadic ADHD. We also analyzed a Brazilian sample of 503 children/adolescent controls from a High Risk Cohort Study for the Development of Childhood Psychiatric Disorders, and also previously published results of five CNV studies and one GWAS meta-analysis of ADHD involving children/adolescents. The results from the Brazilian trios showed that cases with de novo SNVs tend not to have de novo CNVs and vice-versa. Although the sample size is small, we could also see that various comorbidities are more frequent in cases with only inherited variants. Moreover, using only genes expressed in brain, we constructed two “in silico” protein-protein interaction networks, one with genes from any analysis, and other with genes with hits in two analyses. Topological and functional analyses of genes in this network uncovered genes related to synapse, cell adhesion, glutamatergic and serotoninergic pathways, both confirming findings of previous studies and capturing new genes and genetic variants in these pathways.


2021 ◽  
Vol 11 ◽  
Author(s):  
Silvia Giunco ◽  
Paolo Boscolo-Rizzo ◽  
Enrica Rampazzo ◽  
Giancarlo Tirelli ◽  
Lara Alessandrini ◽  
...  

ObjectiveTo date, no useful prognostic biomarker exists for patients with oral squamous cell carcinoma (OCSCC), a tumour with uncertain biological behaviour and subsequent unpredictable clinical course. We aim to investigate the prognostic significance of two recurrent somatic mutations (-124 C>T and -146 C>T) within the promoter of telomerase reverse transcriptase (TERT) gene and the impact of TERT single nucleotide polymorphism (SNP) rs2853669 in patients surgically treated for OCSCC.MethodsThe genetic frequencies of rs2853669, -124 C>T and -146 C>T as well as the telomere length were investigated in 144 tumours and 57 normal adjacent mucosal (AM) specimens from OCSCC patients.ResultsForty-five tumours harboured TERT promoter mutations (31.3%), with -124 C>T and -146 C>T accounting for 64.4% and 35.6% of the alterations respectively. Patients with -124 C>T TERT promoter mutated tumours had the shortest telomeres in the AM (p=0.016) and showed higher risk of local recurrence (hazard ratio [HR]:2.75, p=0.0143), death (HR:2.71, p=0.0079) and disease progression (HR:2.71, p=0.0024) with the effect being potentiated by the co-occurrence of T/T genotype of rs2853669.Conclusion-124 C>T TERT promoter mutation as well as the T/T genotype of the rs2853669 SNP are attractive independent prognostic biomarkers in patients surgically treated for OCSCC, with the coexistence of these genetic variants showing a synergistic impact on the aggressiveness of the disease.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii351-iii351
Author(s):  
Frank Dubois ◽  
Ofer Shapira ◽  
Noah Greenwald ◽  
Travis Zack ◽  
Jessica W Tsai ◽  
...  

Abstract BACKGROUND Driver single nucleotide variants (SNV) and somatic copy number aberrations (SCNA) of pediatric high-grade glioma (pHGGs), including Diffuse Midline Gliomas (DMGs) are characterized. However, structural variants (SVs) in pHGGs and the mechanisms through which they contribute to glioma formation have not been systematically analyzed genome-wide. METHODS Using SvABA for SVs as well as the latest pipelines for SCNAs and SNVs we analyzed whole-genome sequencing from 174 patients. This includes 60 previously unpublished samples, 43 of which are DMGs. Signature analysis allowed us to define pHGG groups with shared SV characteristics. Significantly recurring SV breakpoints and juxtapositions were identified with algorithms we recently developed and the findings were correlated with RNAseq and H3K27ac ChIPseq. RESULTS The SV characteristics in pHGG showed three groups defined by either complex, intermediate or simple signature activities. These associated with distinct combinations of known driver oncogenes. Our statistical analysis revealed recurring SVs in the topologically associating domains of MYCN, MYC, EGFR, PDGFRA & MET. These correlated with increased mRNA expression and amplification of H3K27ac peaks. Complex recurring amplifications showed characteristics of extrachromosomal amplicons and were enriched in coding SVs splitting protein regulatory from effector domains. Integrative analysis of all SCNAs, SNVs & SVs revealed patterns of characteristic combinations between potential drivers and signatures. This included two distinct groups of H3K27M DMGs with either complex or simple signatures and different combinations of associated variants. CONCLUSION Recurrent SVs associate with signatures shaped by an underlying process, which can lead to distinct mechanisms to activate the same oncogene.


ESC CardioMed ◽  
2018 ◽  
pp. 669-671
Author(s):  
Eric Schulze-Bahr

The human genome consists of approximately 3 billion (3 × 109) base pairs of DNA (around 20,000 genes), organized as 23 chromosomes (diploid parental set), and a small mitochondrial genome (37 genes, including 13 proteins; 16,589 base pairs) of maternal origin. Most human genetic variation is natural, that is, common or rare (minor allele frequency >0.1%) and does not cause disease—apart from every true disease-causing (bona fide) mutation each individual genome harbours more than 3.5 million single nucleotide variants (including >10,000 non-synonymous changes causing amino acid substitutions) and 200–300 large structural or copy number variants (insertions/deletions, up to several thousands of base-pairs) that are non-disease-causing variations and scattered throughout coding and non-coding genomic regions.


Author(s):  
Alexander Charney ◽  
Pamela Sklar

Schizophrenia and bipolar disorder are the classic psychotic disorders. Both diseases are strongly familial, but have proven recalcitrant to genetic methodologies for identifying the etiology until recently. There is now convincing genetic evidence that indicates a contribution of many DNA changes to the risk of becoming ill. For schizophrenia, there are large contributions of rare copy number variants and common single nucleotide variants, with an overall highly polygenic genetic architecture. For bipolar disorder, the role of copy number variation appears to be much less pronounced. Specific common single nucleotide polymorphisms are associated, and there is evidence for polygenicity. Several surprises have emerged from the genetic data that indicate there is significantly more molecular overlap in copy number variants between autism and schizophrenia, and in common variants between schizophrenia and bipolar disorder.


Sign in / Sign up

Export Citation Format

Share Document