The Newton primordial atom in superspace-time

2016 ◽  
Vol 13 (02) ◽  
pp. 1650020 ◽  
Author(s):  
Vladimir Lasukov

Quantum solution of differential equations of classical mechanics is found. This solution describes test particle motion in an external gravitational field with the variable passive mass. Theoretical prediction of quintesphere existence in the universe is made.

2011 ◽  
Vol 89 (6) ◽  
pp. 689-695 ◽  
Author(s):  
Sumanta Chakraborty ◽  
Subenoy Chakraborty

The trajectory of a test particle or a photon around a general spherical black hole is studied, and bending of the light trajectory is investigated. A pseudo-Newtonian gravitational potential describing the gravitational field of the black hole is determined and is compared with the related effective potential for test particle motion. As an example, results are presented for a Reissner–Nordström black hole.


2008 ◽  
Vol 17 (11) ◽  
pp. 2089-2105 ◽  
Author(s):  
ZDENĚK STUCHLÍK ◽  
JIŘÍ KOVÁŘ

Pseudo-Newtonian gravitational potential describing the gravitational field of static and spherically symmetric black holes in the universe with a repulsive cosmological constant is introduced. In order to demonstrate the accuracy of the pseudo-Newtonian approach, the related effective potential for test particle motion is constructed and compared with its general-relativistic counterpart given by the Schwarzschild–de Sitter geometry. The results indicate that such an approach could be useful in applications of developed Newtonian theories of accretion disks in astrophysically interesting situations in large galactic structures for the Schwarzschild–de Sitter space–times with the cosmological parameter y = Λ M2/3 ≤ 10-6.


Author(s):  
David M. Wittman

General relativity explains much more than the spacetime around static spherical masses.We briefly assess general relativity in the larger context of physical theories, then explore various general relativistic effects that have no Newtonian analog. First, source massmotion gives rise to gravitomagnetic effects on test particles.These effects also depend on the velocity of the test particle, which has substantial implications for orbits around black holes to be further explored in Chapter 20. Second, any changes in the sourcemass ripple outward as gravitational waves, and we tell the century‐long story from the prediction of gravitational waves to their first direct detection in 2015. Third, the deflection of light by galaxies and clusters of galaxies allows us to map the amount and distribution of mass in the universe in astonishing detail. Finally, general relativity enables modeling the universe as a whole, and we explore the resulting Big Bang cosmology.


2016 ◽  
Vol 15 (03) ◽  
pp. 1640002 ◽  
Author(s):  
Andrea Oldofredi ◽  
Dustin Lazarovici ◽  
Dirk-André Deckert ◽  
Michael Esfeld

By means of the examples of classical and Bohmian quantum mechanics, we illustrate the well-known ideas of Boltzmann as to how one gets from laws defined for the universe as a whole the dynamical relations describing the evolution of subsystems. We explain how probabilities enter into this process, what quantum and classical probabilities have in common and where exactly their difference lies.


2013 ◽  
Vol 22 (12) ◽  
pp. 1330030 ◽  
Author(s):  
GAETANO LAMBIASE ◽  
SUBHENDRA MOHANTY ◽  
ARAGAM R. PRASANNA

In this paper, we review the theories of origin of matter–antimatter asymmetry in the universe. The general conditions for achieving baryogenesis and leptogenesis in a CPT conserving field theory have been laid down by Sakharov. In this review, we discuss scenarios where a background scalar or gravitational field spontaneously breaks the CPT symmetry and splits the energy levels between particles and antiparticles. Baryon or Lepton number violating processes in proceeding at thermal equilibrium in such backgrounds gives rise to Baryon or Lepton number asymmetry.


Author(s):  
H.S. Vieira ◽  
V.B. Bezerra

In this paper, we use the Lagrangian formalism of classical mechanics and some assumptions to obtain cosmological differential equations analogous to Friedmann and Einstein equations, obtained from the theory of general relativity. This method can be used to a universe constituted of incoherent matter, that is, the cosmologic substratum is comprised of dust.


2021 ◽  
Vol 82 (4) ◽  
pp. 61-64
Author(s):  
Vasil Сhaban ◽  

Based on the proposed differential equations of the interaction of the electric signal with the gravitational field, the observed phenomena are known as the gravitational lens and the Shapiro effect are investigated. The deflection of a light ray in the field of the Sun is simulated. It is shown that a moving photon undergoes in the gravitational field not only a transverse action, which causes a curvature of the trajectory but also a longitudinal one, implementing the acceleration-braking processes. As a result, the instability of the speed of light in a vacuum was revealed.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Alexander P. Sobolev

AbstractThe gravitational equations were derived in general relativity (GR) using the assumption of their covariance relative to arbitrary transformations of coordinates. It has been repeatedly expressed an opinion over the past century that such equality of all coordinate systems may not correspond to reality. Nevertheless, no actual verification of the necessity of this assumption has been made to date. The paper proposes a theory of gravity with a constraint, the degenerate variants of which are general relativity (GR) and the unimodular theory of gravity. This constraint is interpreted from a physical point of view as a sufficient condition for the adiabaticity of the process of the evolution of the space–time metric. The original equations of the theory of gravity with the constraint are formulated. On this basis, a unified model of the evolution of the modern, early, and very early Universe is constructed that is consistent with the observational astronomical data but does not require the hypotheses of the existence of dark energy, dark matter or inflatons. It is claimed that: physical time is anisotropic, the gravitational field is the main source of energy of the Universe, the maximum global energy density in the Universe was 64 orders of magnitude smaller the Planckian one, and the entropy density is 18 orders of magnitude higher the value predicted by GR. The value of the relative density of neutrinos at the present time and the maximum temperature of matter in the early Universe are calculated. The wave equation of the gravitational field is formulated, its solution is found, and the nonstationary wave function of the very early Universe is constructed. It is shown that the birth of the Universe was random.


Author(s):  
Vlatko Vedral

In Chapter 9 we discussed the idea of a universal Turing machine. This machine is capable of simulating any other machine given sufficient time and energy. For example, we discussed how your fridge microprocessor could be programmed to run Microsoft Windows, then we described Moore’s logic, that computers are becoming faster and smaller. Therefore, one day, a single atom may be able to simulate fully what a present day PC can do. This leads us to the fascinating possibility that every little constituent of our Universe may be able to simulate any other, given enough time and energy. The Universe therefore consists of a great number of little universal quantum computers. But this surely makes the Universe itself the largest quantum computer. So how powerful is our largest quantum computer? How many bits, how many computational steps? What is the total amount of information that the computer can hold? Since our view is that everything in reality is composed of information, it would be useful to know how much information there is in total and whether this total amount is growing or shrinking. The Second Law already tells us that the physical entropy in the Universe is always increasing. Since physical entropy has the same form as Shannon’s information, the Second Law also tells us that the information content of the Universe can only ever increase too. But what does this mean for us? If we consider our objective to be a full understanding of the Universe then we have to accept that the finish line is always moving further and further away from us. We define our reality through the laws and principles that we establish from the information that we gather. Quantum mechanics, for example, gives us a very different reality to what classical mechanics told us. In the Stone Age, the caveman’s perception of reality and what was possible was also markedly different from what Newton would have understood. In this way we process information from the Universe to create our reality. We can think of the Universe as a large balloon, within which there is a smaller balloon, our reality.


Sign in / Sign up

Export Citation Format

Share Document