conformal flatness
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Marc Mars ◽  
Carlos Peón-Nieto

AbstractWe study the free data in the Fefferman–Graham expansion of asymptotically Einstein $$(n+1)$$ ( n + 1 ) -dimensional metrics with non-zero cosmological constant. We analyze the relation between the electric part of the rescaled Weyl tensor at $${\mathscr {I}}$$ I , D, and the free data at $${\mathscr {I}}$$ I , namely a certain traceless and transverse part of the n-th order coefficient of the expansion $$\mathring{g}_{(n)}$$ g ˚ ( n ) . In the case $$\Lambda <0$$ Λ < 0 and Lorentzian signature, it was known [23] that conformal flatness at $${\mathscr {I}}$$ I is sufficient for D and $$\mathring{g}_{(n)}$$ g ˚ ( n ) to agree up to a universal constant. We recover and extend this result to general signature and any sign of non-zero $$\Lambda $$ Λ . We then explore whether conformal flatness of $${\mathscr {I}}$$ I is also neceesary and link this to the validity of long-standing open conjecture that no non-trivial purely magnetic $$\Lambda $$ Λ -vacuum spacetimes exist. In the case of $${\mathscr {I}}$$ I non-conformally flat we determine a quantity constructed from an auxiliary metric which can be used to retrieve $$\mathring{g}_{(n)}$$ g ˚ ( n ) from the (now singular) electric part of the Weyl tensor. We then concentrate in the $$\Lambda >0$$ Λ > 0 case where the Cauchy problem at $${\mathscr {I}}$$ I of the Einstein vacuum field equations is known to be well-posed when the data at $${\mathscr {I}}$$ I are analytic or when the spacetime has even dimension. We establish a necessary and sufficient condition for analytic data at $${\mathscr {I}}$$ I to generate spacetimes with symmetries in all dimensions. These results are used to find a geometric characterization of the Kerr-de Sitter metrics in all dimensions in terms of its geometric data at null infinity.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 154
Author(s):  
Muhammad Zeeshan Gul ◽  
Muhammad Sharif

This paper investigates the dynamics of charged cylindrical collapse with the dissipative matter configuration in f(R,TαβTαβ) theory. This newly formulated theory resolves the primordial singularity and provides feasible cosmological results in the early universe.Moreover, its implications occur in high curvature regime where the deviations of energy-momentum squared gravity from general relativity is confirmed. We establish dynamical and transport equations through the Misner–Sharp and Mu¨ler–Israel Stewart techniques, respectively. We then couple these equations to examine the impact of effective fluid parameters and correction terms on the collapsing phenomenon. A connection between the modified terms, matter parameters, and Weyl tensor is also developed. To obtain conformal flatness, we choose a particular model of this theory and assume that dust matter with zero charge leads to conformal flatness and homogenous energy density. We found that the modified terms, dissipative matter, and electromagnetic field reduce the collapsing phenomenon.


2019 ◽  
Vol 28 (03) ◽  
pp. 1950051
Author(s):  
M. Sharif ◽  
Sobia Sadiq

The purpose of this paper is to construct spherically symmetric models for anisotropic matter configurations by imposing conformally flat conditions. This work is done for a relatively moving observer with matter using two types of polytropic equations of state. We evaluate the corresponding conservation equation, mass equation as well as energy constraints for both choices of equations of state. The conformal flatness is employed to find a specific form of anisotropy which aids study to spherical polytropic configurations. It is found that the first model satisfies all the energy conditions while the second model does not meet the dominant energy bound. It is also found that both models remain stable throughout the evolution.


2018 ◽  
Vol 33 (19) ◽  
pp. 1850109 ◽  
Author(s):  
M. Sharif ◽  
Saba Naz

This paper studies the gravitational collapse of charged anisotropic spherical stellar objects in [Formula: see text] gravity. For this purpose, we derive dynamical equations by considering Misner–Sharp mechanism and explore physical impact of charge, anisotropy and effective pressure on the rate of collapse. We establish the relationship between matter variables, Weyl tensor and the Gauss–Bonnet (GB) terms. For constant value of [Formula: see text], it turns out that conformal flatness condition is no longer valid due to the effect of anisotropic factor in the present scenario. To obtain conformally flat metric, we impose the condition of isotropic matter distribution which provides energy density homogeneity and conformal flatness of the metric. We conclude that GB terms lead to decrease in the collapse rate due to their anti-gravitational effects.


2018 ◽  
Vol 85 (1-2) ◽  
pp. 241
Author(s):  
Gauree Shanker

The problem of conformal transformation and conformal flatness of Finsler spaces has been studied in [6], [16], [17], [20], [21]. Recently, Prasad et. al [19] have studied three dimensional conformally flat Landsberg and Berwald spaces and have obtained some important results. The purpose of the present paper is to extend the idea of conformal change to four dimensional Finsler spaces and find the suitable conditions under which a four dimensional conformally at Landsberg space becomes a Berwald space.


2015 ◽  
Vol 48 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Gianluca Bande ◽  
David E. Blair ◽  
Amine Hadjar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document