General Relativistic Charged Dust Sphere with Conformal Flatness

Author(s):  
Shailendra Kumar
Author(s):  
Lev G. D’YACHKOV ◽  
Mikhail M. VASILYEV ◽  
Oleg F. PETROV ◽  
Sergey F. SAVIN ◽  
Igor V. CHURILO

We discuss the possibility of using static magnetic traps as an alternative to electrostatic traps for forming and confining structures of charged dust particles in a gas discharge plasma in the context of our study of strongly interacting Coulomb systems. Some advantages of confining structures in magnetic traps over electrostatic ones are shown. Also we provide a review of the related researches carried out first in laboratory conditions, and then under microgravity conditions including the motivation of performing the experiments aboard the International Space Station (ISS). The preparations of a new space experiment «Coulomb-magnet» as well as the differences of a new equipment from previously used are described. We proposed the main tasks of the new experiment as a study of the dynamics and structure of active monodisperse and polydisperse macroparticles in an inhomogeneous magnetic field under microgravity conditions, including phase transitions and the evolution of such systems in the kinetic heating of dust particles by laser radiation. Key words: Coulomb structures, magnetic trap, antiprobotron, diamagnetic particles, dust particles, microgravity.


Author(s):  
David M. Wittman

General relativity explains much more than the spacetime around static spherical masses.We briefly assess general relativity in the larger context of physical theories, then explore various general relativistic effects that have no Newtonian analog. First, source massmotion gives rise to gravitomagnetic effects on test particles.These effects also depend on the velocity of the test particle, which has substantial implications for orbits around black holes to be further explored in Chapter 20. Second, any changes in the sourcemass ripple outward as gravitational waves, and we tell the century‐long story from the prediction of gravitational waves to their first direct detection in 2015. Third, the deflection of light by galaxies and clusters of galaxies allows us to map the amount and distribution of mass in the universe in astonishing detail. Finally, general relativity enables modeling the universe as a whole, and we explore the resulting Big Bang cosmology.


1999 ◽  
Vol 521 (1) ◽  
pp. 376-381 ◽  
Author(s):  
Atsuyuki Hayashi ◽  
Yoshiharu Eriguchi ◽  
Masa‐aki Hashimoto

Author(s):  
Laxmikanta Mandi ◽  
Kaushik Roy ◽  
Prasanta Chatterjee

Analytical solitary wave solution of the dust ion acoustic waves (DIAWs) is studied in the frame-work of Korteweg-de Vries (KdV), damped force Korteweg-de Vries (DFKdV), damped force modified Korteweg-de Vries (DFMKdV) and damped forced Zakharov-Kuznetsov (DFZK) equations in an unmagnetized collisional dusty plasma consisting of negatively charged dust grain, positively charged ions, Maxwellian distributed electrons and neutral particles. Using reductive perturbation technique (RPT), the evolution equations are obtained for DIAWs.


2020 ◽  
Vol 75 (12) ◽  
pp. 999-1007
Author(s):  
Rustam Ali ◽  
Anjali Sharma ◽  
Prasanta Chatterjee

AbstractHead-on interaction of four dust ion acoustic (DIA) solitons and the statistical properties of the wave field due to head-on interaction of solitons moving in opposite direction is studied in the framework of two Korteweg de Vries (KdV) equations. The extended Poincaré–Lighthill–Kuo (PLK) method is applied to obtain two opposite moving KdV equations from an unmagnetized four component plasma model consisting of Maxwellian negative ions, cold mobile positive ions, κ-distributed electrons and positively charged dust grains. Hirota’s bilinear method is adopted to obtain two-soliton solutions of both the KdV equations and accordingly act of soliton turbulence is presented due to head-on collision of four solitons. The amplitude and shape of the resultant wave profile at the point of strongest interaction are obtained. To see the effect of head-on collision on the statistical properties of wave field the first four moments are computed. It is observed that the head-on collision has no effect on the first integral moment while the second, third and fourth moments increase in the dominant interaction region of four solitons, which is a clean indication of soliton turbulence.


2010 ◽  
Vol 76 (3-4) ◽  
pp. 409-418 ◽  
Author(s):  
A. A. MAMUN ◽  
K. S. ASHRAFI ◽  
M. G. M. ANOWAR

AbstractThe dust ion-acoustic solitary waves (SWs) in an unmagnetized dusty adiabatic electronegative plasma containing inertialess adiabatic electrons, inertial single charged adiabatic positive and negative ions, and stationary arbitrarily (positively and negatively) charged dust have been theoretically studied. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits an SW solution. The combined effects of the adiabaticity of plasma particles, inertia of positive or negative ions, and presence of positively or negatively charged dust, which are found to significantly modify the basic features of small but finite-amplitude dust-ion-acoustic SWs, are explicitly examined. The implications of our results in space and laboratory dusty electronegative plasmas are briefly discussed.


Synthese ◽  
2021 ◽  
Author(s):  
Antonio Vassallo

AbstractThe dynamics of general relativity is encoded in a set of ten differential equations, the so-called Einstein field equations. It is usually believed that Einstein’s equations represent a physical law describing the coupling of spacetime with material fields. However, just six of these equations actually describe the coupling mechanism: the remaining four represent a set of differential relations known as Bianchi identities. The paper discusses the physical role that the Bianchi identities play in general relativity, and investigates whether these identities—qua part of a physical law—highlight some kind of a posteriori necessity in a Kripkean sense. The inquiry shows that general relativistic physics has an interesting bearing on the debate about the metaphysics of the laws of nature.


2021 ◽  
Vol 502 (2) ◽  
pp. 1843-1855
Author(s):  
Antonios Nathanail ◽  
Ramandeep Gill ◽  
Oliver Porth ◽  
Christian M Fromm ◽  
Luciano Rezzolla

ABSTRACT We perform 3D general-relativistic magnetohydrodynamic simulations to model the jet break-out from the ejecta expected to be produced in a binary neutron-star merger. The structure of the relativistic outflow from the 3D simulation confirms our previous results from 2D simulations, namely, that a relativistic magnetized outflow breaking out from the merger ejecta exhibits a hollow core of θcore ≈ 4°, an opening angle of θjet ≳ 10°, and is accompanied by a wind of ejected matter that will contribute to the kilonova emission. We also compute the non-thermal afterglow emission of the relativistic outflow and fit it to the panchromatic afterglow from GRB170817A, together with the superluminal motion reported from VLBI observations. In this way, we deduce an observer angle of $\theta _{\rm obs}= 35.7^{\circ \, \, +1.8}_{\phantom{\circ \, \, }-2.2}$. We further compute the afterglow emission from the ejected matter and constrain the parameter space for a scenario in which the matter responsible for the thermal kilonova emission will also lead to a non-thermal emission yet to be observed.


Sign in / Sign up

Export Citation Format

Share Document