scholarly journals Three founding ancestral genomes involved in the origin of sugarcane

2021 ◽  
Author(s):  
Nicolas Pompidor ◽  
Carine Charron ◽  
Catherine Hervouet ◽  
Stéphanie Bocs ◽  
Gaëtan Droc ◽  
...  

Abstract Background and Aims Modern sugarcane cultivars (Saccharum spp.) are high polyploids, aneuploids (2n = ~12x = ~120) derived from interspecific hybridizations between the domesticated sweet species Saccharum officinarum and the wild species S. spontaneum. Methods To analyse the architecture and origin of such a complex genome, we analysed the sequences of all 12 hom(oe)ologous haplotypes (BAC clones) from two distinct genomic regions of a typical modern cultivar, as well as the corresponding sequence in Miscanthus sinense and Sorghum bicolor, and monitored their distribution among representatives of the Saccharum genus. Key Results The diversity observed among haplotypes suggested the existence of three founding genomes (A, B, C) in modern cultivars, which diverged between 0.8 and 1.3 Mya. Two genomes (A, B) were contributed by S. officinarum; these were also found in its wild presumed ancestor S. robustum, and one genome (C) was contributed by S. spontaneum. These results suggest that S. officinarum and S. robustum are derived from interspecific hybridization between two unknown ancestors (A and B genomes). The A genome contributed most haplotypes (nine or ten) while the B and C genomes contributed one or two haplotypes in the regions analysed of this typical modern cultivar. Interspecific hybridizations likely involved accessions or gametes with distinct ploidy levels and/or were followed by a series of backcrosses with the A genome. The three founding genomes were found in all S. barberi, S. sinense and modern cultivars analysed. None of the analysed accessions contained only the A genome or the B genome, suggesting that representatives of these founding genomes remain to be discovered. Conclusions This evolutionary model, which combines interspecificity and high polyploidy, can explain the variable chromosome pairing affinity observed in Saccharum. It represents a major revision of the understanding of Saccharum diversity.

Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 987-1000 ◽  
Author(s):  
Laurent Grivet ◽  
Angelique D'Hont ◽  
Daniele Roques ◽  
Philippe Feldmann ◽  
Claire Lanaud ◽  
...  

Abstract Sugarcane cultivars are polyploid, aneuploid, interspecific hybrids between the domesticated species Saccharum officinarum and the wild relative S. spontaneum. Cultivar chromosome numbers range from 100 to 130 with ~10% contributed by S. spontaneum. We have undertaken a mapping study on the progeny of a selfed cultivar, R570, to analyze this complex genome structure. A set of 128 restriction fragment length polymorphism probes and one isozyme was used. Four hundred and eight markers were placed onto 96 cosegregation groups, based on linkages in coupling only. These groups could tentatively be assembled into 10 basic linkage groups on the basis of common probes. Origin of markers was investigated for 61 probes and the isozyme, leading to the identification of 80 S. officinarum and 66 S. spontaneum derived markers, respectively. Their distribution in cosegregation groups showed better map coverage for the S. spontaneum than for the S. officinnrum genome fraction and occasional recombination between the two genomes. The study of repulsions between markers suggested the prevalence of random pairing between chromosomes, typical of autopolyploids. However, cases of preferential pairing between S. spontaneum chromosomes were also detected. A tentative Saccharum map was constructed by pooling linkage information for each linkage group.


Genetics ◽  
2002 ◽  
Vol 161 (4) ◽  
pp. 1661-1672 ◽  
Author(s):  
Andrea Pedrosa ◽  
Niels Sandal ◽  
Jens Stougaard ◽  
Dieter Schweizer ◽  
Andreas Bachmair

AbstractLotus japonicus is a model plant for the legume family. To facilitate map-based cloning approaches and genome analysis, we performed an extensive characterization of the chromosome complement of the species. A detailed karyotype of L. japonicus Gifu was built and plasmid and BAC clones, corresponding to genetically mapped markers (see the accompanying article by Sandal  et al. 2002, this issue), were used for FISH to correlate genetic and chromosomal maps. Hybridization of DNA clones from 32 different genomic regions enabled the assignment of linkage groups to chromosomes, the comparison between genetic and physical distances throughout the genome, and the partial characterization of different repetitive sequences, including telomeric and centromeric repeats. Additional analysis of L. filicaulis and its F1 hybrid with L. japonicus demonstrated the occurrence of inversions between these closely related species, suggesting that these chromosome rearrangements are early events in speciation of this group.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1984
Author(s):  
Majid Nikpay ◽  
Sepehr Ravati ◽  
Robert Dent ◽  
Ruth McPherson

Here, we performed a genome-wide search for methylation sites that contribute to the risk of obesity. We integrated methylation quantitative trait locus (mQTL) data with BMI GWAS information through a SNP-based multiomics approach to identify genomic regions where mQTLs for a methylation site co-localize with obesity risk SNPs. We then tested whether the identified site contributed to BMI through Mendelian randomization. We identified multiple methylation sites causally contributing to the risk of obesity. We validated these findings through a replication stage. By integrating expression quantitative trait locus (eQTL) data, we noted that lower methylation at cg21178254 site upstream of CCNL1 contributes to obesity by increasing the expression of this gene. Higher methylation at cg02814054 increases the risk of obesity by lowering the expression of MAST3, whereas lower methylation at cg06028605 contributes to obesity by decreasing the expression of SLC5A11. Finally, we noted that rare variants within 2p23.3 impact obesity by making the cg01884057 site more susceptible to methylation, which consequently lowers the expression of POMC, ADCY3 and DNAJC27. In this study, we identify methylation sites associated with the risk of obesity and reveal the mechanism whereby a number of these sites exert their effects. This study provides a framework to perform an omics-wide association study for a phenotype and to understand the mechanism whereby a rare variant causes a disease.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 2007-2023 ◽  
Author(s):  
Marion S Röder ◽  
Victor Korzun ◽  
Katja Wendehake ◽  
Jens Plaschke ◽  
Marie-Hélène Tixier ◽  
...  

Abstract Hexaploid bread wheat (Triticum aestivum L. em. Thell) is one of the world's most important crop plants and displays a very low level of intraspecific polymorphism. We report the development of highly polymorphic microsatellite markers using procedures optimized for the large wheat genome. The isolation of microsatellite-containing clones from hypomethylated regions of the wheat genome increased the proportion of useful markers almost twofold. The majority (80%) of primer sets developed are genome-specific and detect only a single locus in one of the three genomes of bread wheat (A, B, or D). Only 20% of the markers detect more than one locus. A total of 279 loci amplified by 230 primer sets were placed onto a genetic framework map composed of RFLPs previously mapped in the reference population of the International Triticeae Mapping Initiative (ITMI) Opata 85 × W7984. Sixty-five microsatellites were mapped at a LOD >2.5, and 214 microsatellites were assigned to the most likely intervals. Ninety-three loci were mapped to the A genome, 115 to the B genome, and 71 to the D genome. The markers are randomly distributed along the linkage map, with clustering in several centromeric regions.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Benjamin Soibam ◽  
Ayzhamal Zhamangaraeva

Abstract Background Chromosomes are organized into units called topologically associated domains (TADs). TADs dictate regulatory landscapes and other DNA-dependent processes. Even though various factors that contribute to the specification of TADs have been proposed, the mechanism is not fully understood. Understanding the process for specification and maintenance of these units is essential in dissecting cellular processes and disease mechanisms. Results In this study, we report a genome-wide study that considers the idea of long noncoding RNAs (lncRNAs) mediating chromatin organization using lncRNA:DNA triplex-forming sites (TFSs). By analyzing the TFSs of expressed lncRNAs in multiple cell lines, we find that they are enriched in TADs, their boundaries, and loop anchors. However, they are evenly distributed across different regions of a TAD showing no preference for any specific portions within TADs. No relationship is observed between the locations of these TFSs and CTCF binding sites. However, TFSs are located not just in promoter regions but also in intronic, intergenic, and 3’UTR regions. We also show these triplex-forming sites can be used as predictors in machine learning models to discriminate TADs from other genomic regions. Finally, we compile a list of important “TAD-lncRNAs” which are top predictors for TADs identification. Conclusions Our observations advocate the idea that lncRNA:DNA TFSs are positioned at specific areas of the genome organization and are important predictors for TADs. LncRNA:DNA triplex formation most likely is a general mechanism of action exhibited by some lncRNAs, not just for direct gene regulation but also to mediate 3D chromatin organization.


Genetics ◽  
2003 ◽  
Vol 164 (1) ◽  
pp. 247-258 ◽  
Author(s):  
Jinghong Li ◽  
Willis X Li

Abstract Overactivation of receptor tyrosine kinases (RTKs) has been linked to tumorigenesis. To understand how a hyperactivated RTK functions differently from wild-type RTK, we conducted a genome-wide systematic survey for genes that are required for signaling by a gain-of-function mutant Drosophila RTK Torso (Tor). We screened chromosomal deficiencies for suppression of a gain-of-function mutation tor (torGOF), which led to the identification of 26 genomic regions that, when in half dosage, suppressed the defects caused by torGOF. Testing of candidate genes in these regions revealed many genes known to be involved in Tor signaling (such as those encoding the Ras-MAPK cassette, adaptor and structural molecules of RTK signaling, and downstream target genes of Tor), confirming the specificity of this genetic screen. Importantly, this screen also identified components of the TGFβ (Dpp) and JAK/STAT pathways as being required for TorGOF signaling. Specifically, we found that reducing the dosage of thickveins (tkv), Mothers against dpp (Mad), or STAT92E (aka marelle), respectively, suppressed torGOF phenotypes. Furthermore, we demonstrate that in torGOF embryos, dpp is ectopically expressed and thus may contribute to the patterning defects. These results demonstrate an essential requirement of noncanonical signaling pathways for a persistently activated RTK to cause pathological defects in an organism.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Martin Johnsson ◽  
Andrew Whalen ◽  
Roger Ros-Freixedes ◽  
Gregor Gorjanc ◽  
Ching-Yi Chen ◽  
...  

Abstract Background Meiotic recombination results in the exchange of genetic material between homologous chromosomes. Recombination rate varies between different parts of the genome, between individuals, and is influenced by genetics. In this paper, we assessed the genetic variation in recombination rate along the genome and between individuals in the pig using multilocus iterative peeling on 150,000 individuals across nine genotyped pedigrees. We used these data to estimate the heritability of recombination and perform a genome-wide association study of recombination in the pig. Results Our results confirmed known features of the recombination landscape of the pig genome, including differences in genetic length of chromosomes and marked sex differences. The recombination landscape was repeatable between lines, but at the same time, there were differences in average autosome-wide recombination rate between lines. The heritability of autosome-wide recombination rate was low but not zero (on average 0.07 for females and 0.05 for males). We found six genomic regions that are associated with recombination rate, among which five harbour known candidate genes involved in recombination: RNF212, SHOC1, SYCP2, MSH4 and HFM1. Conclusions Our results on the variation in recombination rate in the pig genome agree with those reported for other vertebrates, with a low but nonzero heritability, and the identification of a major quantitative trait locus for recombination rate that is homologous to that detected in several other species. This work also highlights the utility of using large-scale livestock data to understand biological processes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Soo Bin Kwon ◽  
Jason Ernst

AbstractIdentifying genomic regions with functional genomic properties that are conserved between human and mouse is an important challenge in the context of mouse model studies. To address this, we develop a method to learn a score of evidence of conservation at the functional genomics level by integrating information from a compendium of epigenomic, transcription factor binding, and transcriptomic data from human and mouse. The method, Learning Evidence of Conservation from Integrated Functional genomic annotations (LECIF), trains neural networks to generate this score for the human and mouse genomes. The resulting LECIF score highlights human and mouse regions with shared functional genomic properties and captures correspondence of biologically similar human and mouse annotations. Analysis with independent datasets shows the score also highlights loci associated with similar phenotypes in both species. LECIF will be a resource for mouse model studies by identifying loci whose functional genomic properties are likely conserved.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 493
Author(s):  
Salvatore Mastrangelo ◽  
Filippo Cendron ◽  
Gianluca Sottile ◽  
Giovanni Niero ◽  
Baldassare Portolano ◽  
...  

Through the development of the high-throughput genotyping arrays, molecular markers and genes related to phenotypic traits have been identified in livestock species. In poultry, plumage color is an important qualitative trait that can be used as phenotypic marker for breed identification. In order to assess sources of genetic variation related to the Polverara chicken breed plumage colour (black vs. white), we carried out a genome-wide association study (GWAS) and a genome-wide fixation index (FST) scan to uncover the genomic regions involved. A total of 37 animals (17 white and 20 black) were genotyped with the Affymetrix 600 K Chicken single nucleotide polymorphism (SNP) Array. The combination of results from GWAS and FST revealed a total of 40 significant markers distributed on GGA 01, 03, 08, 12 and 21, and located within or near known genes. In addition to the well-known TYR, other candidate genes have been identified in this study, such as GRM5, RAB38 and NOTCH2. All these genes could explain the difference between the two Polverara breeds. Therefore, this study provides the basis for further investigation of the genetic mechanisms involved in plumage color in chicken.


Sign in / Sign up

Export Citation Format

Share Document