scholarly journals Influence of non-gravitational effects on the Centaur upper stage of the Surveyor 2 spacecraft

2021 ◽  
Vol 2103 (1) ◽  
pp. 012029
Author(s):  
A A Martyusheva ◽  
A V Devyatkin

Abstract A small near-Earth asteroid, discovered by the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) on September 17, 2020, turned out to be a part of the Centaur upper stage of the Surveyor 2 spacecraft launched by NASA on September 20, 1966 and subsequently crashed. This object had moved in a heliocentric orbit until it was under the influence of Earth’s gravitational field. As a result, a close approach to the Earth took place at a distance of about 50000 km on December 1, 2020. Despite the fact that the Centaur escaped back into a new orbit around the Sun in March 2021, it is of special interest for research, in particular, to consider the impact of non-gravitational effects on its orbital characteristics. Thus, it was calculated that the maximum displacement of the object trajectory due to the influence of solar radiation pressure over 15 years (the next close approach will take place in 2036) can be about 10.3-13.5 km, depending on the albedo. Estimations of the Yarkovsky effect showed that the magnitude of the expected change in the semi-major axis of Centaur’s orbit is from -8.1 • 10−13 to 1.6 10−13, depending on the angle of its rotation.

Author(s):  
Elisa Maria Alessi ◽  
Camilla Colombo ◽  
Alessandro Rossi

Abstract The aim of this work is to provide an analytical model to characterize the equilibrium points and the phase space associated with the singly averaged dynamics caused by the planetary oblateness coupled with the solar radiation pressure perturbations. A two-dimensional differential system is derived by considering the classical theory, supported by the existence of an integral of motion comprising semi-major axis, eccentricity and inclination. Under the single resonance hypothesis, the analytical expressions for the equilibrium points in the eccentricity-resonant angle space are provided, together with the corresponding linear stability. The Hamiltonian formulation is also given. The model is applied considering, as example, the Earth as major oblate body, and a simple tool to visualize the structure of the phase space is presented. Finally, some considerations on the possible use and development of the proposed model are drawn.


2020 ◽  
Vol 644 ◽  
pp. A23
Author(s):  
S. Ieva ◽  
E. Dotto ◽  
E. Mazzotta Epifani ◽  
D. Perna ◽  
C. Fanasca ◽  
...  

Context. The near-Earth objects (NEOs), whose proximity makes them the most accessible bodies in the Solar System, allow us to sample asteroids from tens of kilometers down to objects of a few meters in size. However, while the physical properties for the largest bodies are mostly known, we have very little physical information regarding the small NEOs. These objects today represent the overall majority among the ~2500 new discoveries each year, but they are usually only bright enough to be observable during their close approaches. Aims. Our aim was to extend our survey that started in 2015 on the NEO population, using ground-based observations to characterize the fainter (and typically smaller) NEOs observable each night. Methods. We performed BVRIz photometry of NEOs, making use of the DOLORES instrument at the Telescopio Nazionale Galileo (TNG, La Palma, Spain) and the Asiago Schmidt telescope (Italy), in order to derive visible color indexes and the taxonomic classification for each target in our sample. Results. We taxonomically classified 51 new NEOs for the first time. Together with data obtained in our previous work and collected by other surveys available online, we analyzed an extended sample of 1081 individual NEOs. While the overall majority of them belong to the S-complex, our analysis of the taxonomic distribution found a larger contribution for dark bodies going toward larger H, suggesting that they could be more abundant among the fainter NEOs. Moreover, we find an interesting correlation between semi-major axis and diameter, which could be in part related to the Yarkovsky effect. Rapid characterization of the fainter NEO population shortly after their discovery will be crucial in the future, before those bodies become too faint to be observed, or lost forever.


2020 ◽  
Vol 643 ◽  
pp. A67
Author(s):  
Francesco Marzari

Context. The recent discovery of rings and massive satellites around minor bodies and dwarf planets suggests that they may often coexist, as for example around Haumea. Aims. A ring perturbed by an oblate central body and by an inclined satellite may disperse on a short timescale. The conditions under which a ring may survive are explored both analytically and numerically. Methods. The trajectories of ring particles are integrated under the influence of the gravitational field of a triaxial ellipsoid and (a) massive satellite(s), including the effects of collisions. Results. A ring initially formed in the equatorial plane of the central body will be disrupted if the satellite has an inclination in the Kozai–Lidov regime (39.2° < i < 144.8). For lower inclinations, the ring may relax to the satellite orbital plane thanks to an intense collisional damping. On the other hand, a significant J2 term easily suppresses the perturbations of an inclined satellite within a critical semi-major axis, even in the case of Kozai–Lidov cycles. However, if the ring is initially inclined with respect to the equatorial plane, the same J2 perturbations are not a protective factor but instead disrupt the ring on a short timescale. The ring found around Haumea is stable despite the rise in the impact velocities that is due to the asymmetric shape of the body and the presence of a 3:1 resonance with the rotation of the central body. Conclusions. A ring close to an oblate central body should be searched for in the proximity of the equatorial plane, where the J2 perturbations protect it against the perturbations of an external inclined satellites. In an inclined configuration, the J2 term is itself disruptive.


1992 ◽  
Vol 152 ◽  
pp. 33-36
Author(s):  
R.A. Broucke

We made a numerical study of the General Three-Body Problem in two dimensions, with the intention to obtain some statistical estimates of the outcome of the system after a long time. Two different sets of masses were used. In the first series of experiments we use masses in the ratio of 0.95, 0.04 and 0.01. In the second series, we use masses that are exactly in the Sun-Jupiter-Saturn ratio. To facilitate the discussion, we use the names Sun, Jupiter and Saturn for the three masses, in both cases. In all our experiments, the orbit of Jupiter starts with zero eccentricity and with a unit radius. However, the orbit of Saturn varies in two ways: the initial value of the semi-major axis varies from 1.1 to 3.5 and the eccentricity from 0.0 to 0.75. In total about 4000 cases were run for the two series of masses. All the numerical integrations were done with the method of recurrent power series of order 14, in a heliocentric frame of reference, integrating thus eight simultaneous first-order differential equations. All integrations were performed for a maximum of 12,500 canonical units of time, corresponding to about 2000 revolutions of Jupiter. The cause of termination or type of catastrophe for the system has been determined in all cases. In most cases, this is a close approach of Saturn with Jupiter, followed by ejection of Saturn from the system.


2012 ◽  
Vol 27 (12) ◽  
pp. 1250071 ◽  
Author(s):  
L. IORIO

We work out the impact that the recently determined time-dependent component of the Pioneer Anomaly (PA), if interpreted as an additional exotic acceleration of gravitational origin with respect to the well-known PA-like constant one, may have on the orbital motions of some planets of the solar system. By assuming that it points towards the Sun, it turns out that both the semi-major axis a and the eccentricity e of the orbit of a test particle would experience secular variations. For Saturn and Uranus, for which modern data records cover at least one full orbital revolution, such predicted anomalies are up to 2–3 orders of magnitude larger than the present-day accuracies in empirical determinations of their orbital parameters from the usual orbit determination procedures in which the PA was not modeled. Given the predicted huge sizes of such hypothetical signatures, it is unlikely that their absence from the presently available processed data can be attributable to an "absorption" for them in the estimated parameters caused by the fact that they were not explicitly modeled. The magnitude of a constant PA-type acceleration at 9.5 au cannot be larger than 9×10-15 m s-2 according to the latest observational results for the perihelion precession of Saturn.


2008 ◽  
Vol 4 (S253) ◽  
pp. 556-559
Author(s):  
Joseph C. Carson

AbstractWithin the next five years, a number of direct-imaging planet search instruments, like the VLT SPHERE instrument, will be coming online. To successfully carry out their programs, these instruments will rely heavily on a-priori information on planet composition, atmosphere, and evolution. Transiting planet surveys, while covering a different semi-major axis regime, have the potential to provide critical foundations for these next-generation surveys. For example, improved information on planetary evolutionary tracks may significantly impact the insights that can be drawn from direct-imaging statistical data. Other high-impact results from transiting planet science include information on mass-to-radius relationships as well as atmospheric absorption bands. The marriage of transiting planet and direct-imaging results may eventually give us the first complete picture of planet migration, multiplicity, and general evolution.


2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Jorge A. Pérez-Hernández ◽  
Luis Benet

AbstractThe leading source of uncertainty to predict the orbital motion of asteroid (99942) Apophis is a non-gravitational acceleration arising from the anisotropic thermal re-emission of absorbed radiation, known as the Yarkovsky effect. Previous attempts to obtain this parameter from astrometry for this object have only yielded marginally small values, without ruling out a pure gravitational interaction. Here we present an independent estimation of the Yarkovsky effect based on optical and radar astrometry which includes observations obtained during 2021. Our numerical approach exploits automatic differentiation techniques. We find a non-zero Yarkovsky parameter, A2 = (−2.899 ± 0.025) × 10−14 au d−2, with induced semi-major axis drift of (−199.0 ± 1.5) m yr−1 for Apophis. Our results provide definite collision probability predictions for the close approaches in 2029, 2036, and 2068.


2015 ◽  
Vol 50 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Sośnica Krzysztof

Abstract The high-quality satellite orbits of geodetic satellites, which are determined using Satellite Laser Ranging (SLR) observations, play a crucial role in providing, e.g., low-degree coefficients of the Earth's gravity field including geocenter coordinates, Earth rotation parameters, as well as the SLR station coordinates. The appropriate modeling of non-gravitational forces is essential for the orbit determination of artificial Earth satellites. The atmospheric drag is a dominating perturbing force for satellites at low altitudes up to about 700-1000 km. This article addresses the impact of the atmospheric drag on mean semi-major axes and orbital eccentricities of geodetic spherical satellites: Starlette, Stella, AJISAI, and LARES. Atmospheric drag causes the semi-major axis decays amounting to about ▲a = -1.2, -.12, -.14, and -.30 m/year for LARES, AJISAI, Starlette, and Stella, respectively. The density of the upper atmosphere strongly depends on the solar and geomagnetic activity. The atmospheric drag affects the along-track orbit component to the largest extent, and the out-of-plane to a small extent, whereas the radial component is almost unaffected by the atmospheric drag.


2020 ◽  
Vol 635 ◽  
pp. A113
Author(s):  
C.-Y. Ding ◽  
Z. Zhu ◽  
J.-C. Liu ◽  
N. Liu

Aims. In order to check the astrometric solution quality, dependences of parallaxes and proper motions on precision, reliability, and consistency of sample solutions are studied for the quasars in the celestial reference frame of the second release of Gaia data (Gaia-CRF2). Methods. Astrometric statistics (the number of visibility periods, the semi-major axis of the astrometric five-dimensional error ellipse σ5d,  max, the unit weight error u, the correlation coefficients ρμα*,  ϖ and ρμδ, ϖ) were selected to serve as indicators of the solution qualities of quasars. The dependences of the astrometric parameters, parallaxes and proper motions, on these indicators are evaluated. We also investigated mean values of astrometric statistics in equal-area spherical cells to study the impact of the scanning law. Results. The astrometric parameters of quasars with fewer than 9 or more than 18 visibility periods show a departure from the global average. Moreover, the mean values of astrometric parameters of the most precise sources deviate from the others. Astrometric parameters are stable for those quasars fitting the five-parameter model well. The correlation coefficients, ρμα*, ϖ and ρμδ, ϖ obtained from the astrometric solutions show a generally ideal distribution for the full sample. Spherical-cell mean values of these correlation coefficients are found to have a centrally asymmetric distribution. Distributions of two correlation coefficients are found to correlate with the number of visibility periods. The quasars with visibility periods in the domain [13, 16], with ρμα*, ϖ and ρμδ, ϖ generally well-distributed have more reliable astrometric parameters. Magnitudes and colours are found to have little influence on the irregular patterns of the correlation coefficients.


2018 ◽  
Vol 614 ◽  
pp. A97 ◽  
Author(s):  
Xiaodong Liu ◽  
Jrgen Schmidt

In a previous paper we simulated the orbital evolution of dust particles from the Jupiter Trojan asteroids ejected by the impacts of interplanetary particles, and evaluated their overall configuration in the form of dust arcs. Here we compare the orbital properties of these Trojan dust particles and the Trojan asteroids. Both Trojan asteroids and most of the dust particles are trapped in the Jupiter 1:1 resonance. However, for dust particles, this resonance is modified because of the presence of solar radiation pressure, which reduces the peak value of the semi-major axis distribution. We find also that some particles can be trapped in the Saturn 1:1 resonance and higher order resonances with Jupiter. The distributions of the eccentricity, the longitude of pericenter, and the inclination for Trojans and the dust are compared. For the Trojan asteroids, the peak in the longitude of pericenter distribution is about 60 degrees larger than the longitude of pericenter of Jupiter; in contrast, for Trojan dust this difference is smaller than 60 degrees, and it decreases with decreasing grain size. For the Trojan asteroids and most of the Trojan dust, the Tisserand parameter is distributed in the range of two to three.


Sign in / Sign up

Export Citation Format

Share Document