scholarly journals Germ cell apoptosis is critical to maintain Caenorhabditis elegans offspring viability in stressful environments

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260573
Author(s):  
Sarah Fausett ◽  
Nausicaa Poullet ◽  
Clotilde Gimond ◽  
Anne Vielle ◽  
Michele Bellone ◽  
...  

Maintaining reproduction in highly variable, often stressful, environments is an essential challenge for all organisms. Even transient exposure to mild environmental stress may directly damage germ cells or simply tax the physiology of an individual, making it difficult to produce quality gametes. In Caenorhabditis elegans, a large fraction of germ cells acts as nurse cells, supporting developing oocytes before eventually undergoing so-called physiological germ cell apoptosis. Although C. elegans apoptosis has been extensively studied, little is known about how germline apoptosis is influenced by ecologically relevant environmental stress. Moreover, it remains unclear to what extent germline apoptosis contributes to maintaining oocyte quality, and thus offspring viability, in such conditions. Here we show that exposure to diverse environmental stressors, likely occurring in the natural C. elegans habitat (starvation, ethanol, acid, and mild oxidative stress), increases germline apoptosis, consistent with previous reports on stress-induced apoptosis. Using loss-of-function mutant alleles of ced-3 and ced-4, we demonstrate that eliminating the core apoptotic machinery strongly reduces embryonic survival when mothers are exposed to such environmental stressors during early adult life. In contrast, mutations in ced-9 and egl-1 that primarily block apoptosis in the soma but not in the germline, did not exhibit such reduced embryonic survival under environmental stress. Therefore, C. elegans germ cell apoptosis plays an essential role in maintaining offspring fitness in adverse environments. Finally, we show that ced-3 and ced-4 mutants exhibit concomitant decreases in embryo size and changes in embryo shape when mothers are exposed to environmental stress. These observations may indicate inadequate oocyte provisioning due to the absence of germ cell apoptosis. Taken together, our results show that the central genes of the apoptosis pathway play a key role in maintaining gamete quality, and thus offspring fitness, under ecologically relevant environmental conditions.

Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2587 ◽  
Author(s):  
Hyemin Min ◽  
Ji-Sun Kim ◽  
Jiyun Ahn ◽  
Yhong-Hee Shim

Gliadin is a major protein component of gluten and causes gluten toxicity through intestinal stress. We previously showed that gliadin intake induces oxidative stress in the intestine and reduces fertility in a Caenorhabditis elegans model. To elucidate the possible link between intestinal stress and reproduction, changes in the intestine and germ cells of C. elegans after gliadin intake were examined at the molecular level. Gliadin intake increased reactive oxygen species (ROS) production in the intestine, decreased intestinal F-actin levels, and increased germ cell apoptosis. These gliadin-triggered effects were suppressed by antioxidant treatment. These results suggest that ROS production in the intestine induced by gliadin intake causes disruption of intestinal integrity and increases germ cell apoptosis. Gliadin-induced germ cell apoptosis (GIGA) was suppressed by depletion of cep-1, ced-13, egl-1, or mpk-1. However, HUS-1 was not activated, suggesting that GIGA is activated through the mitogen-activated protein kinase (MAPK) pathway and is CEP-1-dependent but is a separate pathway from that controlling the DNA damage response. Taken together, our results suggest that gliadin causes intestinal barrier disruption through ROS production and interacts with the germ cells to reduce fertility through GIGA.


2017 ◽  
Vol 157 (2) ◽  
pp. 510-518 ◽  
Author(s):  
Xinyue You ◽  
Jing Xi ◽  
Yiyi Cao ◽  
Jinfu Zhang ◽  
Yang Luan

2016 ◽  
pp. kfw258 ◽  
Author(s):  
Brittany O’Donnell ◽  
Lily Huo ◽  
Joseph R. Polli ◽  
Li Qiu ◽  
David Collier ◽  
...  

2017 ◽  
Vol 51 (4) ◽  
pp. 193-204 ◽  
Author(s):  
Dibyendu Dutta ◽  
In Park ◽  
Hiwot Guililat ◽  
Samuel Sang ◽  
Arpita Talapatra ◽  
...  

Abstract Objective. Testosterone depletion induces increased germ cell apoptosis in testes. However, limited studies exist on genes that regulate the germ cell apoptosis. Granzymes (GZM) are serine proteases that induce apoptosis in various tissues. Multiple granzymes, including GZMA, GZMB and GZMN, are present in testes. Th us, we investigated which granzyme may be testosterone responsive and possibly may have a role in germ cell apoptosis aft er testosterone depletion. Methods. Ethylene dimethane sulfonate (EDS), a toxicant that selectively ablates the Leydig cells, was injected into rats to withdraw the testosterone. The testosterone depletion effects after 7 days post-EDS were verified by replacing the testosterone exogenously into EDS-treated rats. Serum or testicular testosterone was measured by radioimmunoassay. Using qPCR, mRNAs of granzyme variants in testes were quantified. The germ cell apoptosis was identified by TUNEL assay and the localization of GZMK was by immunohistochemistry. Results. EDS treatment eliminated the Leydig cells and depleted serum and testicular testosterone. At 7 days post-EDS, testis weights were reduced 18% with increased germ cell apoptosis plus elevation GZMK expression. GZMK was not associated with TUNEL-positive cells, but was localized to stripped cytoplasm of spermatids. In addition, apoptotic round spermatids were observed in the caput epididymis. Conclusions. GZMK expression in testes is testosterone dependent. GZMK is located adjacent to germ cells in seminiferous tubules and the presence of apoptotic round spermatids in the epididymis suggest its role in the degradation of microtubules in ectoplasmic specializations. Thus, overexpression of GZMK may indirectly regulate germ cell apoptosis by premature release of round spermatids from seminiferous tubule lumen.


PLoS Genetics ◽  
2011 ◽  
Vol 7 (8) ◽  
pp. e1002238 ◽  
Author(s):  
Rachael Rutkowski ◽  
Robin Dickinson ◽  
Graeme Stewart ◽  
Ashley Craig ◽  
Marianne Schimpl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document