organic acidemias
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 13)

H-INDEX

16
(FIVE YEARS 1)

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 891
Author(s):  
Ninna Pulido ◽  
Johana M. Guevara-Morales ◽  
Alexander Rodriguez-López ◽  
Álvaro Pulido ◽  
Jhon Díaz ◽  
...  

The utility of low-resolution 1H-NMR analysis for the identification of biomarkers provided evidence for rapid biochemical diagnoses of organic acidemia and aminoacidopathy. 1H-NMR, with a sensitivity expected for a field strength of 400 MHz at 64 scans was used to establish the metabolomic urine sample profiles of an infant population diagnosed with small molecule Inborn Errors of Metabolism (smIEM) compared to unaffected individuals. A qualitative differentiation of the 1H-NMR spectral profiles of urine samples obtained from individuals affected by different organic acidemias and aminoacidopathies was achieved in combination with GC–MS. The smIEM disorders investigated in this study included phenylalanine metabolism; isovaleric, propionic, 3-methylglutaconicm and glutaric type I acidemia; and deficiencies in medium chain acyl-coenzyme and holocarboxylase synthase. The observed metabolites were comparable and similar to those reported in the literature, as well as to those detected with higher-resolution NMR. In this study, diagnostic marker metabolites were identified for the smIEM disorders. In some cases, changes in metabolite profiles differentiated post-treatments and follow-ups while allowing for the establishment of different clinical states of a biochemical disorder. In addition, for the first time, a 1H-NMR-based biomarker profile was established for holocarboxylase synthase deficiency spectrum.


Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2195
Author(s):  
Yasushi Ueyanagi ◽  
Daiki Setoyama ◽  
Daisuke Kawakami ◽  
Yuichi Mushimoto ◽  
Shinya Matsumoto ◽  
...  

Gas chromatography-mass spectrometry has been widely used to analyze hundreds of organic acids in urine to provide a diagnostic basis for organic acidemia. However, it is difficult to operate in clinical laboratories on a daily basis due to sample pretreatment processing. Therefore, we aimed to develop a fully automated system for quantifying serum organic acids using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The pretreatment CLAM-2030 device was connected to an LC-MS/MS system for processing serum under optimized conditions, which included derivatizing serum organic acids using 3-Nitrophenylhydrazine. The derivatized organic acids were separated on a reverse-phase Sceptor HD-C column and detected using negative-ion electrospray ionization multiple reaction monitoring MS. The automated pretreatment-LC-MS/MS system processed serum in less than 1 h and analyzed 19 serum organic acids, which are used to detect organic acidemias. The system exhibited high quantitative sensitivity ranging from approximately 2 to 100 µM with a measurement reproducibility of 10.4% CV. Moreover, a proof-of-concept validation of the system was performed using sera from patients with propionic acidemia (n = 5), methylmalonic acidemia (n = 2), and 3-methylcrotonylglycinuria (n = 1). The levels of marker organic acids specific to each disease were significantly elevated in the sera of the patients compared to those in control samples. The automated pretreatment-LC-MS/MS system can be used as a rapid in-hospital system to measure organic acid levels in serum for the diagnosis of organic acidemias.


Author(s):  
Shagun Kaur ◽  
Stephanie L. Campbell ◽  
David W. Stockton
Keyword(s):  

2021 ◽  
Vol 26 ◽  
pp. 100715
Author(s):  
Ertugrul Kiykim ◽  
Ozge Oguz ◽  
Cisem Duman ◽  
Tanyel Zubarioglu ◽  
Mehmet Serif Cansever ◽  
...  
Keyword(s):  

2020 ◽  
Vol 7 ◽  
Author(s):  
Kyung Chan Park ◽  
Steve Krywawych ◽  
Eva Richard ◽  
Lourdes R. Desviat ◽  
Pawel Swietach

Clinical observations and experimental studies have determined that systemic acid-base disturbances can profoundly affect the heart. A wealth of information is available on the effects of altered pH on cardiac function but, by comparison, much less is known about the actions of the organic anions that accumulate alongside H+ ions in acidosis. In the blood and other body fluids, these organic chemical species can collectively reach concentrations of several millimolar in severe metabolic acidoses, as in the case of inherited organic acidemias, and exert powerful biological actions on the heart that are not intuitive to predict. Indeed, cardiac pathologies, such as cardiomyopathy and arrhythmia, are frequently reported in organic acidemia patients, but the underlying pathophysiological mechanisms are not well established. Research efforts in the area of organic anion physiology have increased dramatically in recent years, particularly for propionate, which accumulates in propionic acidemia, one of the commonest organic acidemias characterized by a high incidence of cardiac disease. This Review provides a comprehensive historical overview of all known organic acidemias that feature cardiac complications and a state-of-the-art overview of the cardiac sequelae observed in propionic acidemia. The article identifies the most promising candidates for molecular mechanisms that become aberrantly engaged by propionate anions (and its metabolites), and discusses how these may result in cardiac derangements in propionic acidemia. Key clinical and experimental findings are considered in the context of potential therapies in the near future.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3331
Author(s):  
Francesco Francini-Pesenti ◽  
Giorgia Gugelmo ◽  
Livia Lenzini ◽  
Nicola Vitturi

Low-protein diets (LPDs) are the main treatment for urea cycle disorders (UCDs) and organic acidemias (OAs). In most cases, LPDs start in childhood and must be continued into adulthood. The improved life expectancy of patients with UCDs and OAs raises the question of their consequences on nutritional status in adult subjects. As this topic has so far received little attention, we conducted a review of scientific studies that investigated the nutrient intake and nutritional status in adult patients with UCDs and branched chain organic acidemias (BCOAs) on LPD. Methods: The literature search was conducted in PubMed/MEDLINE, Scopus, EMBASE and Google Scholar from 1 January 2000 to 31 May 2020, focusing on nutrient intake and nutritional status in UCD and OA adult patients. Results: Despite protein restriction is recommended as the main treatment for UCDs and OAs, in these patients, protein intake ranges widely, with many patients who do not reach safety levels. When evaluated, micronutrient intake resulted below recommended values in some patients. Lean body mass resulted in most cases lower than normal range while fat body mass (FM) was often found normal or higher than the controls or reference values. Protein intake correlated inversely with FM both in adult and pediatric UCD patients. Conclusions: The clinical management of adult patients with UCDs and BCOAs should include an accurate assessment of the nutritional status and body composition. However, as little data is still available on this topic, further studies are needed to better clarify the effects of LPDs on nutritional status in adult UCD and BCOA patients.


Author(s):  
William L. Nyhan ◽  
Georg F. Hoffmann ◽  
Aida I. Al-Aqeel ◽  
Bruce A. Barshop
Keyword(s):  

2020 ◽  
Vol 4 (3-4) ◽  
pp. 121-131
Author(s):  
Kimberly A. Chapman

Sign in / Sign up

Export Citation Format

Share Document