scholarly journals Study on Time Factors in the Smoke Control Process of Highway Tunnel Fires

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Guoping Zheng ◽  
Dapeng Xue ◽  
Yizhou Zhuang ◽  
Yusheng Zhu

Fire is the most deadly risk during tunnel operation. Early rapid response and a reasonable smoke control plan are very important to evaluate tunnel fire performance. In order to study the relevant time factors for smoke management in a highway tunnel, firstly, the logical sequence and time of the fire alarm system (FAS) startup are investigated and analyzed. Then, according to the one-dimensional fluid mechanics model, the time rule of adjusting the airflow field in the tunnel from the normal operation stage to the emergency ventilation state is analyzed theoretically. Finally, the abovementioned theoretical formulas are verified through the employment of model experiments. The analysis shows that the time that passes from the start of the fire to when the exhaust fan is activated is close to 3 minutes. The time required to form a stable critical wind speed, however, is close to 7 minutes, which is longer than the 5 minutes it takes for the fire to reach its maximum temperature. Due to inertia, it takes about 0.5 to 2 minutes for the air velocity in tunnels of different lengths to drop from the traffic piston wind speed to the critical wind speed. If reverse smoke extraction is required, however, the duration is between 3 and 8 minutes. The conclusion is of guiding significance for the preparation of the emergency linkage control scheme for tunnels, as well as for the setting of initial boundary conditions for CFD fire simulations.

2015 ◽  
Vol 33 (3) ◽  
pp. 477 ◽  
Author(s):  
Nadja Gomes Machado ◽  
Marcelo Sacardi Biudes ◽  
Carlos Alexandre Santos Querino ◽  
Victor Hugo De Morais Danelichen ◽  
Maísa Caldas Souza Velasque

ABSTRACT. Cuiab´a is located on the border of the Pantanal and Cerrado, in Mato Grosso State, which is recognized as one of the biggest agricultural producers of Brazil. The use of natural resources in a sustainable manner requires knowledge of the regional meteorological variables. Thus, the objective of this study was to characterize the seasonal and interannual pattern of meteorological variables in Cuiab´a. The meteorological data from 1961 to 2011 were provided by the Instituto Nacional de Meteorologia (INMET – National Institute of Meteorology). The results have shown interannual and seasonal variations of precipitation, solar radiation, air temperature and relative humidity, and wind speed and direction, establishing two main distinct seasons (rainy and dry). On average, 89% of the rainfall occurred in the wet season. The annual average values of daily global radiation, mean, minimum and maximum temperature and relative humidity were 15.6 MJ m–2 y–1, 27.9◦C, 23.0◦C, 30.0◦C and 71.6%, respectively. Themaximum temperature and the wind speed had no seasonal pattern. The wind speed average decreased in the NWdirectionand increased in the S direction.Keywords: meteorological variables, climatology, ENSO. RESUMO. Cuiabá está localizado na fronteira do Pantanal com o Cerrado, no Mato Grosso, que é reconhecido como um dos maiores produtores agrícolas do Brasil. A utilização dos recursos naturais de forma sustentável requer o conhecimento das variáveis meteorológicas em escala regional. Assim, o objetivo deste estudo foi caracterizar o padrão sazonal e interanual das variáveis meteorológicas em Cuiabá. Os dados meteorológicos de 1961 a 2011 foram fornecidos pelo Instituto Nacional de Meteorologia (INMET). Os resultados mostraram variações interanuais e sazonais de precipitação, radiação solar, temperatura e umidade relativa do ar e velocidade e direção do vento, estabelecendo duas principais estações distintas (chuvosa e seca). Em média, 89% da precipitação ocorreu na estação chuvosa. Os valores médios anuais de radiação diária global, temperatura do ar média, mínima e máxima e umidade relativa do ar foram 15,6 MJ m–2 y–1, 27,9◦C, 23,0◦C, 30,0◦C e 71,6%, respectivamente. A temperatura máxima e a velocidade do vento não tiveram padrão sazonal. A velocidade média do vento diminuiu na direção NW e aumentou na direção S.Palavras-chave: variáveis meteorológicas, climatologia, ENOS.


2021 ◽  
Author(s):  
Tianyu Qin ◽  
Yu Hao ◽  
Juan He

Abstract Background: Although the occurrence of some infectious diseases including TB was found to be associated with specific weather factors, few studies have incorporated weather factors into the model to predict the incidence of tuberculosis (TB). We aimed to establish an accurate forecasting model using TB data in Guangdong Province, incorporating local weather factors.Methods: Data of sixteen meteorological variables (2003-2016) and the TB incidence data (2004-2016) of Guangdong were collected. Seasonal autoregressive integrated moving average (SARIMA) model was constructed based on the data. SARIMA model with weather factors as explanatory variables (SARIMAX) was performed to fit and predict TB incidence in 2017. Results: Maximum temperature, maximum daily rainfall, minimum relative humidity, mean vapor pressure, extreme wind speed, maximum atmospheric pressure, mean atmospheric pressure and illumination duration were significantly associated with log(TB incidence). After fitting the SARIMAX model, maximum pressure at lag 6 (β= -0.007, P < 0.05, 95% confidence interval (CI): -0.011, -0.002, mean square error (MSE): 0.279) was negatively associated with log(TB incidence), while extreme wind speed at lag 5 (β=0.009, P < 0.05, 95% CI: 0.005, 0.013, MSE: 0.143) was positively associated. SARIMAX (1, 1, 1) (0, 1, 1)12 with extreme wind speed at lag 5 was the best predictive model with lower Akaike information criterion (AIC) and MSE. The predicted monthly TB incidence all fall within the confidence intervals using this model. Conclusions: Weather factors have different effects on TB incidence in Guangdong. Incorporating meteorological factors into the model increased the accuracy of prediction.


2018 ◽  
Vol 22 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Ledong Zhu ◽  
Xiao Tan ◽  
Zhenshan Guo ◽  
Quanshun Ding

To improve the flutter performance of a suspension bridge with a 1088-m-span truss-stiffened deck, the aerodynamic measures of upper and lower central stabilizing barriers were investigated at first via wind tunnel tests of sectional model under the normal wind condition. The yaw wind effect on the flutter performance of the bridge with the above aerodynamic measures was then examined via a series of wind tunnel tests of oblique sectional models. The test results show that the effect of the lower central stabilizing barrier on the flutter critical wind speed is remarkably different from that of the upper central stabilizing barrier for both the normal and skew wind cases. The inclination angle +3° is the most unfavorable inclination angle to the flutter performance of the truss-stiffened suspension bridge no matter whether the aerodynamic control measures are adopted or not. Furthermore, for most cases, the lowest flutter critical wind speed occurs when the incident wind deviates from the normal direction of the bridge span by a small yaw angle between 5° and 10°.


2018 ◽  
Vol 211 ◽  
pp. 581-589
Author(s):  
Zhong-lin Quan ◽  
Ru Zhou ◽  
Jing-jing Lei ◽  
Cheng-yu Gong ◽  
Jun-cheng Jiang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaohui Liu ◽  
Ming Zou ◽  
Chuan Wu ◽  
Bo Yan ◽  
Mengqi Cai

A new calculation method of critical wind speed based on three degrees of freedom (3-DOF) is proposed for galloping problem of iced transmission line. Based on the quasistatic theory, the aerodynamic load of iced transmission line is obtained, which considers the influence of transverse and torsional motion on the relative wind angle of attack. Finally, the equivalent galloping model of 3-DOF iced transmission line is established. At the initial angle of attack, the aerodynamic load is expanded by Taylor, and the unsymmetrical linear aerodynamic coefficient matrix is obtained. The Routh–Hurwitz criterion is used to judge the stability of iced transmission line system, and then the critical wind speed is calculated. The in-plane and out-plane frequencies corresponding to the first-order mode of the transmission line are solved by the analytical method and numerical simulation method. The results obtained by the two methods are compared and verified. The influence of dimensionless transmission line parameter λ on the in-plane and out-of-plane frequencies is discussed. The aerodynamic coefficients of the iced transmission line are measured by wind tunnel test and the aerodynamic characteristics are analyzed. According to the theoretical formula, the critical wind speed is calculated by MATLAB. The critical wind speed determined in this paper is compared with the critical wind speed determined by Den Hartog and Nigol theory. The influences of torsional vibration frequency, ice thickness, and ice shape on critical wind speed are analyzed. The research results of this paper have important theoretical significance for the stability judgment of iced transmission lines.


2016 ◽  
Vol 94 (6) ◽  
Author(s):  
Axel Albrecht ◽  
Eric Badel ◽  
Vivien Bonnesoeur ◽  
Yves Brunet ◽  
Thiéry Constant ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
pp. 34
Author(s):  
Long Wang ◽  
Cheng Chen ◽  
Tongguang Wang ◽  
Weibin Wang

A new simulation method for the aeroelastic response of wind turbines under typhoons is proposed. The mesoscale Weather Research and Forecasting (WRF) model was used to simulate a typhoon’s average wind speed field. The measured power spectrum and inverse Fourier transform method were coupled to simulate the pulsating wind speed field. Based on the modal method and beam theory, the wind turbine model was constructed, and the GH-BLADED commercial software package was used to calculate the aerodynamic load and aeroelastic response. The proposed method was applied to assess aeroelastic response characteristics of a commercial 6 MW offshore wind turbine under different wind speeds and direction variation patterns for the case study of typhoon Hagupit (2008), with a maximal wind speed of 230 km/h. The simulation results show that the typhoon’s average wind speed field and turbulence characteristics simulated by the proposed method are in good agreement with the measured values: Their difference in the main flow direction is only 1.7%. The scope of the wind turbine blade in the typhoon is significantly larger than under normal wind, while that under normal operation is higher than that under shutdown, even at low wind speeds. In addition, an abrupt change in wind direction has a significant impact on wind turbine response characteristics. Under normal operation, a sharp variation of the wind direction by 90 degrees in 6 s increases the wind turbine (WT) vibration scope by 27.9% in comparison with the case of permanent wind direction. In particular, the maximum deflection of the wind tower tip in the incoming flow direction reaches 28.4 m, which significantly exceeds the design standard safety threshold.


Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 311 ◽  
Author(s):  
Mohammad Valipour ◽  
Mohammad Ali Gholami Sefidkouhi ◽  
Mahmoud Raeini-Sarjaz ◽  
Sandra M. Guzman

In the current research, gene expression programming (GEP) was applied to model reference evapotranspiration (ETo) in 18 regions of Iran with limited meteorological data. Initially, a genetic algorithm (GA) was employed to detect the most important variables for estimating ETo among mean temperature (Tmean), maximum temperature (Tmax), minimum temperature (Tmin), relative humidity (RH), sunshine (n), and wind speed (WS). The results indicated that a coupled model containing the Tmean and WS can predict ETo accurately (RMSE = 0.3263 mm day−1) for arid, semiarid, and Mediterranean climates. Therefore, this model was adjusted using the GEP for all 18 synoptic stations. Under very humid climates, it is recommended to use a temperature-based GEP model versus wind speed-based GEP model. The optimal and lowest performance of the GEP belonged to Shahrekord (SK), RMSE = 0.0650 mm day−1, and Kerman (KE), RMSE = 0.4177 mm day−1, respectively. This research shows that the GEP is a robust tool to model ETo in semiarid and Mediterranean climates (R2 > 0.80). However, GEP is recommended to be used cautiously under very humid climates and some of arid regions (R2 < 0.50) due to its poor performance under such extreme conditions.


2018 ◽  
Vol 84 (866) ◽  
pp. 18-00105-18-00105
Author(s):  
Tomohiro TATEMATSU ◽  
Koji NAKADE ◽  
Katsuhiro KIKUCHI

Sign in / Sign up

Export Citation Format

Share Document