type ii pneumocyte
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Gang Wang ◽  
Jun Guan ◽  
Guojun Li ◽  
Fengtian Wu ◽  
Qin Yang ◽  
...  

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the most significant public health threat worldwide. Patients with severe COVID-19 usually have pneumonia concomitant with local inflammation and sometimes a cytokine storm. Specific components of the SARS-CoV-2 virus trigger lung inflammation, and recruitment of immune cells to the lungs exacerbates this process, although much remains unknown about the pathogenesis of COVID-19. Our study of lung type II pneumocyte cells (A549) demonstrated that ORF7, an open reading frame (ORF) in the genome of SARS-CoV-2, induced the production of CCL2, a chemokine that promotes the chemotaxis of monocytes, and decreased the expression of IL-8, a chemokine that recruits neutrophils. A549 cells also had an increased level of IL-6. The results of our chemotaxis Transwell assay suggested that ORF7 augmented monocyte infiltration and reduced the number of neutrophils. We conclude that the ORF7 of SARS-CoV-2 may have specific effects on the immunological changes in tissues after infection. These results suggest that the functions of other ORFs of SARS-CoV-2 should also be comprehensively examined.


2021 ◽  
Author(s):  
Gang Wang ◽  
Jun Guan ◽  
Guojun Li ◽  
Fengtian Wu ◽  
Qin Yang ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the most significant public health threats in worldwide. Patients with severe COVID-19 usually have pneumonia concomitant with local inflammation and sometimes a cytokine storm. Specific components of the SARS-CoV-2 virus trigger lung inflammation, and recruitment of immune cells to the lungs exacerbates this process, although much remains unknown about the pathogenesis of COVID-19. Our study of lung type II pneumocyte cells (A549) demonstrated that ORF7, an open reading frame (ORF) in the genome of SARS-CoV-2, induced the production of CCL2, a chemokine that promotes the chemotaxis of monocytes, and decreased the expression of IL-8, a chemokine that recruits neutrophils. A549 cells also had an increased level of IL-6. The results of our chemotaxis transwell assay suggested that ORF7 augmented monocyte infiltration and reduced the number of neutrophils. We conclude that the ORF7 of SARS-CoV-2 may have specific effects on the immunological changes in tissues after infection. These results suggest that the functions of other ORFs of SARS-CoV-2 should also be comprehensively examined.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Runzhi Huang ◽  
Tong Meng ◽  
Qiongfang Zha ◽  
Kebin Cheng ◽  
Xin Zhou ◽  
...  

Abstract Background The coronavirus disease 2019 (COVID-19) has induced a worldwide epidemiological event with a high infectivity and mortality. However, the predicting biomarkers and their potential mechanism in the progression of COVID-19 are not well known. Objective The aim of this study is to identify the candidate predictors of COVID-19 and investigate their underlying mechanism. Methods The retrospective study was conducted to identify the potential laboratory indicators with prognostic values of COVID-19 disease. Then, the prognostic nomogram was constructed to predict the overall survival of COVID-19 patients. Additionally, the scRNA-seq data of BALF and PBMCs from COVID-19 patients were downloaded to investigate the underlying mechanism of the most important prognostic indicators in lungs and peripherals, respectively. Results In total, 304 hospitalized adult COVID-19 patients in Wuhan Jinyintan Hospital were included in the retrospective study. CEA was the only laboratory indicator with significant difference in the univariate (P < 0.001) and multivariate analysis (P = 0.020). The scRNA-seq data of BALF and PBMCs from COVID-19 patients were downloaded to investigate the underlying mechanism of CEA in lungs and peripherals, respectively. The results revealed the potential roles of CEA were significantly distributed in type II pneumocytes of BALF and developing neutrophils of PBMCs, participating in the progression of COVID-19 by regulating the cell–cell communication. Conclusion This study identifies the prognostic roles of CEA in COVID-19 patients and implies the potential roles of CEACAM8-CEACAM6 in the progression of COVID-19 by regulating the cell–cell communication of developing neutrophils and type II pneumocyte.


2020 ◽  
Author(s):  
Runzhi Huang ◽  
Tong Meng ◽  
Qiongfang Zha ◽  
Kebin Cheng ◽  
Xin Zhou ◽  
...  

Abstract Background The coronavirus disease 2019 (COVID-19) has induced a worldwide pneumonia with a high infectivity and mortality. However, the predicting biomarkers and their potential mechanism in the progression of COVID-19 are not well known. Objective The aim of this study is to identify the candidate predictors of COVID-19 and investigate their underlying mechanism. Methods The retrospective study was conducted to identify the potential laboratory indicators with prognostic values of COVID-19 disease. Then, the prognostic nomogram was constructed to predict the overall survival of COVID-19 patients. Additionally, the scRNA-seq data of BALF and PBMCs from COVID-19 patients were downloaded to investigate the underlying mechanism of the most important prognostic indicators in lungs and peripherals, respectively. Results 304 hospitalized adult COVID-19 patients in Wuhan Jinyintan Hospital were included in the retrospective study. CEA was the only laboratory indicator with significant difference in the univariate (P < 0.001) and multivariate analysis (P = 0.021). The scRNA-seq data of BALF and PBMCs from COVID-19 patients were downloaded to investigate the underlying mechanism of CEA in lungs and peripherals, respectively. The results revealed the potential roles of CEA were significantly distributed in Type II pneumocytes of BALF and developing neutrophils of PBMCs, participating in the progression of COVID-19 by regulating the cell-cell communication. Conclusion This study identifies the prognostic roles of CEA in COVID-19 patients and implies the potential roles of CEACAM8-CEACAM6 in the progression of COVID-19 by regulating the cell-cell communication of developing neutrophils and Type II pneumocyte.


2020 ◽  
Author(s):  
Megan Prescott ◽  
Kari Fine-Coulson ◽  
Maureen Metcalfe ◽  
Tuhina Gupta ◽  
Michelle Dookwah ◽  
...  

AbstractAlthough interactions with alveolar macrophages have been well characterized for Mycobacterium tuberculosis, the roles epithelial cells play during infection and disease development have been less studied. We have previously shown that deletion of gene rv3351c reduces M. tuberculosis replication in and necrosis of A549 human type II pneumocyte cells. In the present study, we report that rv3351c is required for lipid raft aggregation on A549 cell plasma membranes during M. tuberculosis infection. Lipid raft aggregation was also induced directly by recombinant Rv3351c protein. A Δrv3351c deletion mutant was less effective than wild type M. tuberculosis at circumventing phagolysosome fusion in A549 cells as evidenced by increased co-localization with lysosomal markers LAMP-2 and cathepsin-L by the mutant bacilli. These observations indicate a role for Rv3351c in modification of the plasma membrane to facilitate trafficking and survival of M. tuberculosis bacilli through alveolar epithelial cells, and support the hypothesis that M. tuberculosis has mechanisms to target the alveolar epithelium. Preliminary data also demonstrate that like the type II pneumocyte-targeting M. tuberculosis secreted protein heparin-binding filamentous hemagglutinin (HBHA), Rv3351c is detected by the host cellular and humoral immune responses during infection, and may play an important role in mycobacterial dissemination from the lungs.Author summaryMycobacterium tuberculosis is the leading causes of death due to a single infectious agent and many facets regarding the pathogenesis of this organism remain unknown. This facultative intracellular bacterial pathogen often establishes infection through inhalation of the bacilli into the alveoli of the lungs. Interactions with alveolar macrophages have been well characterized and it had been assumed that these interactions with phagocytic cells primarily determine the fate of the disease. However, alveolar epithelial cells, such as type II pneumocytes, play important roles in disease progression of other bacterial and viral respiratory pathogens, which provided the impetus to more-closely examine pneumocyte-M. tuberculosis interactions. We describe in this study the role of the M. tuberculosis rv3351c gene product in the internalization and survival of this pathogen in human type II pneumocytes. We previously showed that a Δrv3351c mutant replicates less efficiently and generates less necrosis than the parental M. tuberculosis strain in this cell type. We demonstrate herein that Rv3351c protein induces lipid raft aggregation on the membranes of alveolar epithelial cells and that M. tuberculosis Δrv3351c traffics through LAMP-2-labeled endosomes 30% more frequently than the parent strain. This trafficking toward phagolysosomes may underlie the reduced replication and cytotoxicity of the mutant. The role of Rv3351c in trafficking and survival of M. tuberculosis bacilli through epithelial cells ultimately resulting in dissemination from the lungs may begin with modifications to the plasma membrane prior to attachment. Such a mechanism of activity suggests Rv3351c as a potential vaccine target to train the host immune system to bind and eliminate the protein before it modulates the alveolar epithelium.


2019 ◽  
Vol 14 (10) ◽  
pp. S783
Author(s):  
C. Le ◽  
R. Huang ◽  
T. Foutch ◽  
C. Patel ◽  
A. Newell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document