skull size
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
pp. 1-17
Author(s):  
Alexander Csanády ◽  
Ladislav Mošanský

Abstract The results of a craniometric analysis of the bank vole (Myodes glareolus) were evaluated in this study. Twenty cranial variables were measured and evaluated on 149 skulls (78 males, 71 females) with respect to sex and age. The main aim of this study was to test the sexual dimorphism in skull size. Overall, our results showed that on average, the values for adult and subadult females of M. glareolus were higher than for males. Results presented here thus reveal sexual differences in the measured cranial traits, most expressed for the length of the mandible and the height of the mandible. The effect size was very large for the length of the first upper molar. Comparison of our results with those from other countries confirmed that there are regional differences. These findings highlight the need for craniometric analysis of species also at the regional level.


Author(s):  
Oksana Shatkovska ◽  
Maria Ghazali

Despite a considerable interest of researchers to the issue of variation in skull shapes of birds and factors influencing it, some drivers associated with the design features of an entire bird body, which are important for both successful terrestrial locomotion and flight, are overlooked. One of such factors, in our opinion, is relative skull size (skull length in relation to body mass), which can affect the position of the body's center of gravity. We tested effects of relative skull size, allometry (i.e. absolute skull size), and diet on variation in skull shape. The study was conducted on 50 songbird species with a wide range of body mass (8.3g to 570g) and dietary preferences (granivores, insectivores/granivores, insectivores, omnivores). Skull shape was analyzed using 2D geometric morphometrics. We revealed that similar patterns of skull shape occur among passerines with different body sizes and diets. The relative skull size predicted skull shape to a similar extent and with a similar pattern as the absolute size. In our opinion, the effect of the relative skull size on skull shape variation is likely due to biomechanical constraints related to flight.


Therya ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 347-367
Author(s):  
Alejandro Cruz-Gómez ◽  
A. Alondra Castro Campillo ◽  
Zamira A. Ávila-Valle ◽  
Livia León-Paniagua ◽  
Marcia Ramírez-Sánchez ◽  
...  

Previous studies using Cytochrome-b or ND3-ND4 mitochondrial gene have yielded intriguing evidence about the phylogenetic relationships among populations of Peromyscus furvus; however, those studies each based on phylogenies for a single type of genes, yielded conflicting topologies. In addition, analyses with traditional morphometrics have revealed differences in skull size among certain populations of the species. Therefore, in order to reassess the systematic and taxonomic status of P. furvus, we incorporated a suite of genetic and morphometric characters and employed cladistic analyses. Herein, we present results mostly derived from our genetic analyses (results from the phylogenetic examination of skull size and shape will appear later). Phylogenetic analyses were conducted using four mitochondrial genes (Cytb and ND3-ND4L-ND4) with the respective data analyzed separately or combined, followed by an analysis with genetic and morphometric data (size and shape characters). Most phylogenetic constructions were made with parsimonious methods, but probabilistic methods also were used in the analyses with the genes separated by type. Similar topologies were recovered from all analyses of the Cytb gene and from all parsimony analyses of the NADH genes; however, conflicting topologies were obtained with the probabilistic methods for the NADH genes. Additionally, to better understand the genetic variation in each type of gene, analyses for genetic divergence were conducted within and among genetic groups and haplotype networks were constructed. All the topologies obtained using genetic data questioned the monotypic status of P. furvus, as two additional clades were identified that seemingly correspond to unrecognized entities. The first of these, P. latirostris, occurs in the northern region and could be considered as either a species or subspecies. An unknown Peromyscus species nova that occurs to the south is considered as a valid species. Further, P. furvus s. s. becomes a polytypic species by recognizing at least two subspecies (P. f. angustirostris and P. f. furvus). Phylogenetic analyses also rejected membership of P. melanocarpus and P. ochraventer within the furvus species group. Instead, P. melanocarpus showed a greater affinity to P. mexicanus totontepecus, whereas, P. ochraventer either joined to the clade containing P. melanocarpus and P. m. tototepecus or to Megadontomys cryophilus in a sister clade. Finally, Osgoodomys banderanus (subgenus Haplomylomys) always remained basally positioned and segregated from all members of the subgenus Peromyscus.


2021 ◽  
Author(s):  
Ailin Sosa Drouville ◽  
Carolina Paschetta ◽  
Enrique Alberto Crespo ◽  
María Florencia Grandi

2020 ◽  
Vol 24 (1) ◽  
pp. 17-23
Author(s):  
Cheol Hyo Ku ◽  
Soo Won Kim ◽  
Ji Young Kim ◽  
Seung Won Paik ◽  
Hui Joon Yang ◽  
...  

Author(s):  
Lucas Pires ◽  
Albino Junior ◽  
Carlos Chagas ◽  
Jorge Manaia ◽  
Vinicius Gameiro ◽  
...  

2019 ◽  
Vol 101 (2) ◽  
pp. 373-385 ◽  
Author(s):  
Sergio Ticul Álvarez-Castañeda ◽  
Laura A Nájera-Cortazar

Abstract Adaptation and evolution of terrestrial vertebrates inhabiting islands have been the topic of many studies, particularly those seeking to identify trends or patterns in body size in mammals, albeit not necessarily in shape, in relation to mainland populations. The spiny pocket mouse, Chaetodipus spinatus, is distributed in the Baja California peninsula and its surrounding islands. Insular populations became isolated ~12,000 due to changes in sea level; these populations’ matrilinear (mitochondrial) DNA shows minor interpopulation variation. We tested the hypothesis that adaptation and evolution in these island populations involve variation in both skull size and skull shape (using geometric morphometrics) relative to mainland populations, rather than only in size as previously assumed. A total of 363 specimens from 15 insular and peninsular populations were used in analysis of the skull length and geometric morphometric analyses. Our findings revealed significant differences related to skull size among population. The skull shape analyses showed two significantly different morphotypes: one for all island specimens and one for all mainland samples. Our analyses support the hypothesis that insular populations may not only vary in size relative to mainland populations, but may also show variations in shape, regardless of differing conditions across islands.


2018 ◽  
Vol 66 (4) ◽  
Author(s):  
Sandra Milena Ospina

Fish-eating in bats evolved independently in Myotis vivesi (Vespertillionidae ) and Noctilio leporinus (Noctilionidae). We compared cranial morphological characters and bite force   between these species to test the existence of evolutionary parallelism in piscivory. We collected cranial distances of M. vivesi, two related insectivorous bats (M. velifer and M. keaysi), two facultatively piscivorous bats (M. daubentonii and M. capaccinii), and N. leporinus to test for differences among the six species, morphometric data was analyzed applying multivariate methods. We also measured bite force in M. vivesi and evaluated if this value was well predicted by its cranial size. Both piscivorous species were morphologically different from the facultatively piscivorous and insectivorous species, and skull size had a significant contribution to this difference. However, we did not find morphological and functional similarities that could be interpreted as parallelisms between M. vivesi and N. leporinus. These two piscivorous species differed significantly in cranial measurements and in bite force. Bite force measured for M. vivesi was well predicted by skull size. Piscivory in M. vivesi might be associated to the existence of a vertically displaced temporal muscle and an increase in gape angle that allows a moderate bite force to process food.


Sign in / Sign up

Export Citation Format

Share Document