scholarly journals Synthesis of [1,4]Oxathiepino[5,6-b]quinolines via Base-Mediated Intramolecular Hydroalkoxylation

SynOpen ◽  
2022 ◽  
Vol 06 (01) ◽  
pp. 7-10
Author(s):  
Morteza Shiri ◽  
Maryam-Sadat Tonekaboni ◽  
Zahra Tanbakouchian ◽  
Soma Majedi

AbstractA base-mediated intramolecular hydroalkoxylation that was used to prepare a series of seven-membered S,O-heterocycles is described. 2-Thiopropargyl-3-hydroxymethyl quinolines were prepared starting from 2-mercaptoquinoline-3-carbaldehydes, via S-propargylation and reduction of a formyl group. Interestingly, 2-mercaptopropargyl-3-hydroxymethyl quinolines were converted into the corresponding oxathiepinoquinolines in the presence of t-BuOK. It is proposed that the S-propargyl moiety, in the presence of base, is converted into its allenyl isomer; subsequent addition of a hydroxyl group to the terminal double bond yields the 3-methyl-5H-[1,4]oxathiepino[5,6-b]quinoline in good to high yield. Notably, the procedure is adaptable to the conversion of N-propargyl indole-2-methanol into the corresponding intramolecular hydroalkoxylation product.

Synthesis ◽  
2019 ◽  
Vol 51 (24) ◽  
pp. 4619-4624
Author(s):  
Ashley M. Gates ◽  
Webster L. Santos

A method for the regioselective reduction of the terminal double bond of 1,1-disubstituted allenes has been developed. In the presence of a palladium catalyst, tetrahydroxydiboron and stoichiometric water, allene semireduction proceeds in high yield to afford Z-alkenes selectively.


2016 ◽  
Vol 11 (2) ◽  
pp. 1934578X1601100
Author(s):  
Jun Cheng ◽  
Chiaki Nakano ◽  
Guang Lu Shi ◽  
Tsutomu Hoshino

The enzymatic reactions of geranylfarnesol (8) and its acetate 9, classified as sesterterpenes (C25), using squalene-hopene cyclase (SHC) were investigated. The enzymatic reaction of 8 afforded 6/6-fused bicyclic 20, 6/6/6-fused tricyclic 21, and 6/6/6/6-fused tetracyclic compounds 22 and 23 as the main products (35% yield), whereas that of 9 afforded two 6/6/6-fused tricyclic compounds 24 and 25 in a high yield (76.3%) and a small amount (5.0%) of 26 (the acetate of 22). A significantly higher conversion of 9 indicates that the arrangement of the substrate in the reaction cavity changed. The lipophilic nature and/or the bulkiness of the acetyl group may have changed its binding with SHC, thus placing the terminal double bond of 9 in the vicinity of the DXDD motif of SHC, which is responsible for the proton attack on the double bond to initiate the polycyclization reaction. The results obtained for 8 are different to some extent than those reported by Shinozaki et al. The products obtained in this study were deprotonated compounds; however, the products reported by Shinozaki et al. were hydroxylated compounds.


1982 ◽  
Vol 60 (8) ◽  
pp. 1019-1029 ◽  
Author(s):  
Patrice C. Belanger ◽  
Claude Dufresne ◽  
John Scheigetz ◽  
Robert N. Young ◽  
James P. Springer ◽  
...  

A model for the active conformation of methionine-enkephalin containing a β-turn was derived from computer modeling. Using a trans-perhydronaphthalene as a structural template and a mimic of the β-turn, target compounds were designed and synthesized. Thus, a key intermediate, trans-3-oxo-5β-formamidomethyl-8a-phenylmethylperhydronaphthalene, was prepared by two different routes from cyclohexanone.The addition of a methionine-like side-chain to this key intermediate was best achieved by a reaction with the anion of methyl 2-trimethylsilyl-4-methylthiobutanoate. This led to the preparation of an exo-tetrasubstituted double bond in high yield. Subsequent addition of tyrosine through coupling with the 5β-aminomethyl group provided the desired perhydronaphthalene mimics of met-enkaphalin.


2020 ◽  
Vol 23 (2) ◽  
pp. 111-118
Author(s):  
Zhiping Che ◽  
Jinming Yang ◽  
Di Sun ◽  
Yuee Tian ◽  
Shengming Liu ◽  
...  

Background: It is one of the effective ways for pesticide innovation to develop new insecticides from natural products as lead compounds. Quinine, the main alkaloid in the bark of cinchona tree as well as in plants in the same genus, is recognized as a safe and potent botanical insecticide to many insects. The structural modification of quinine into 9R-acyloxyquinine derivatives is a potential approach for the development of novel insecticides, which showed more toxicity than quinine. However, there are no reports on the insecticidal activity of 9Racyloxyquinine derivatives to control Mythimna separata. Methods: Endeavor to discover biorational natural products-based insecticides, 20 novel 9Racyloxyquinine derivatives were prepared and assessed for their insecticidal activity against M. separata in vivo by the leaf-dipping method at 1 mg/mL. Results: Among all the compounds, especially derivatives 5i, 5k and 5t exhibited the best insecticidal activity with final mortality rates of 50.0%, 57.1%, and 53.6%, respectively. Conclusion: Overall, a free 9-hydroxyl group is not a prerequisite for insecticidal activity and C9- substitution is well tolerated; modification of out-ring double-bond is acceptable, and hydrogenation of double-bond enhances insecticidal activity; Quinine ring is essential and open of it is not acceptable. These preliminary results will pave the way for further modification of quinine in the development of potential new insecticides.


2015 ◽  
Vol 11 ◽  
pp. 1163-1174 ◽  
Author(s):  
Michael Weßling ◽  
Hans J Schäfer

Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C–C bond formation with the introduction of two nitro groups in a 1,4-distance and the conversions of the nitro group by reduction to oximes and amines, the conversion into aldehydes and ketones via the Nef reaction and base catalyzed condensations at the acidic CH bond. Eight 1-aryl-2-nitro-1-propenes have been electrolyzed in an undivided electrolysis cell to afford 2,5-dinitro-3,4-diaryl hexanes in high yield. The 4-methoxy-, 4-trifluoromethyl-, 2-chloro- and 2,6-difluorophenyl group and furthermore the 2-furyl and 2-pyrrolyl group have been applied. The reaction is chemoselective as only the double bond but not the nitro group undergoes reaction, is regioselective as a ß,ß-coupling with regard to the nitro group and forms preferentially two out of six possible diastereomers as major products.


2021 ◽  
Author(s):  
Zhi-Peng Ye ◽  
Jie Gao ◽  
Xin-Yu Duan ◽  
Jianping Guan ◽  
Fang Liu ◽  
...  

An unprecedented electrochemical heterodifunctionalization of α-CF3 alkenes with benzenesulfonyl hydrazides was accomplished in this work, wherein a β-sulfonyl and a α-hydroxyl group were simultaneously incorporated across the olefinic double bond...


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Liujuan Zheng ◽  
Haowen Wang ◽  
Aili Fan ◽  
Shu-Ming Li

Abstract Oxepinamides are derivatives of anthranilyl-containing tripeptides and share an oxepin ring and a fused pyrimidinone moiety. To the best of our knowledge, no studies have been reported on the elucidation of an oxepinamide biosynthetic pathway and conversion of a quinazolinone to a pyrimidinone-fused 1H-oxepin framework by a cytochrome P450 enzyme in fungal natural product biosynthesis. Here we report the isolation of oxepinamide F from Aspergillus ustus and identification of its biosynthetic pathway by gene deletion, heterologous expression, feeding experiments, and enzyme assays. The nonribosomal peptide synthase (NRPS) OpaA assembles the quinazolinone core with d-Phe incorporation. The cytochrome P450 enzyme OpaB catalyzes alone the oxepin ring formation. The flavoenzyme OpaC installs subsequently one hydroxyl group at the oxepin ring, accompanied by double bond migration. The epimerase OpaE changes the d-Phe residue back to l-form, which is essential for the final methylation by OpaF.


Author(s):  
Pallavi Kamble ◽  
Sailesh Wadher

 Objective: The objective of the present study was to synthesize a series of 3-hydroxychromone derivatives and to evaluate its in vitro antioxidant and antimicrobial activities.Methods: 3-hydroxy chromones were synthesized using an algar flynn oyamada method which includes oxidative cyclization of 2-hydroxy chalcones in basic solution by hydrogen peroxide. 2-hydroxy chalcones were synthesized by Claisen-Schmidt condensation of substituted 2-hydroxy acetophenones with substituted aromatic aldehydes using polyethylene glycol-400 as a recyclable solvent. The synthesized compounds were evaluated for in vitro antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay. In addition, these compounds were also screened for in vitro antibacterial and antifungal activity by agar cup method and Poison plate method, respectively.Results: The structures of the synthesized compounds were characterized by infrared, 1H nuclear magnetic resonance and mass spectroscopy. The antioxidant activity data revealed that all the synthesized derivatives exhibited good activity due to the presence of phenolic hydroxyl group, 4-oxo group and 2,3-double bond. Further, the activity increased with the introduction of a more phenolic hydroxyl group and adjacent methoxy group in the structure. The antimicrobial activity data showed that the compounds possess better antibacterial and antifungal activity which is attributed to the presence of phenolic hydroxyl group and 4-oxo group in the structure.Conclusions: The use of inexpensive, eco-friendly and readily available reagents, easy work-up and high purity of products makes the procedure a convenient and robust method for the synthesis of title compounds. The presence of phenolic hydroxyl group, 4-oxo group, and 2,3-double bond in the structure is responsible for their good antioxidant and antimicrobial activities.


Sign in / Sign up

Export Citation Format

Share Document