scholarly journals On a Slightly Different Power Law-Scaling for the Flat Universe

2020 ◽  
Vol 12 (4) ◽  
pp. 569-574
Author(s):  
C. Sivakumar ◽  
R. Francis

A slightly different power law-scaling fits to the picture of our 13.7 billion years old flat universe which is expanding presently at 67 km/s/Mpc with an acceleration. The model which is an attempt to retain power-law scaling in the light of the accepted facts about the universe we are living in, has a constant effective equation of state parameter as the cosmic fluid is a solution of matter, radiation and dark energy. It is successful in explaining the acceleration of universe which the normal power law fails if the present Hubble parameter is 67 km/s/Mpc and age of the universe is 13.7 billion years, and it is free from the defect of singularity.

2010 ◽  
Vol 19 (03) ◽  
pp. 305-316 ◽  
Author(s):  
AHMAD SHEYKHI

We consider the agegraphic models of dark energy in a braneworld scenario with brane–bulk energy exchange. We assume that the adiabatic equation for the dark matter is satisfied while it is violated for the agegraphic dark energy due to the energy exchange between the brane and the bulk. Our study shows that with the brane–bulk interaction, the equation of state parameter of agegraphic dark energy on the brane, wD, can have a transition from the normal state, where wD > -1, to the phantom regime, where wD < -1, while the effective equation of state for dark energy always satisfies [Formula: see text].


2019 ◽  
Vol 34 (30) ◽  
pp. 1950184
Author(s):  
M. Umair Shahzad ◽  
Nadeem Azhar ◽  
Abdul Jawad ◽  
Shamaila Rani

The reconstruction scenario of well-established dark energy models such as pilgrim dark energy model and generalized ghost dark energy with Hubble horizon and [Formula: see text] models is being considered. We have established [Formula: see text] models and analyzed their viability through equation of state parameter and [Formula: see text] (where prime denotes derivative with respect to [Formula: see text]) plane. The equation of state parameter evolutes the universe in three different phases such as quintessence, vacuum and phantom. However, the [Formula: see text] plane also describes the thawing as well as freezing region of the universe. The recent observational data also favor our results.


2005 ◽  
Vol 14 (02) ◽  
pp. 355-362 ◽  
Author(s):  
H. Q. LU

Recent many physicists suggest that the dark energy in the universe might result from the Born–Infeld (B–I) type scalar field of string theory. The universe of B–I type scalar field with potential can undergo a phase of accelerating expansion. The corresponding equation of state parameter lies in the range of -1<ω<-⅓. The equation of state parameter of B–I type scalar field without potential lies in the range of 0≤ω≤1. We find that weak energy condition and strong energy condition are violated for phantom B–I type scalar field. The equation of state parameter lies in the range of ω<-1.


2013 ◽  
Vol 91 (4) ◽  
pp. 351-354 ◽  
Author(s):  
Antonio Pasqua ◽  
Surajit Chattopadhyay

In this paper, we have studied and investigated the behavior of a modified holographic Ricci dark energy (DE) model interacting with pressureless dark matter (DM) under the theory of modified gravity, dubbed logarithmic f(T) gravity. We have chosen the interaction term between DE and DM in the form Q = 3γHρm and investigated the behavior of the torsion, T, the Hubble parameter, H, the equation of state parameter, ωDE, the energy density of DE, ρDE, and the energy density contribution due to torsion, ρT, as functions of the redshift, z. We have found that T increases with the redshift, z, H increases with the evolution of the universe, ωDE has a quintessence-like behavior, and both energy densities increase going from higher to lower redshifts.


2016 ◽  
Vol 71 (10) ◽  
pp. 949-960
Author(s):  
Surajit Chattopadhyay ◽  
Antonio Pasqua ◽  
Irina Radinschi

AbstractThe present paper reports a study on accreting tachyon, Dirac-Born-Infeld essence and h-essence scalar field models of dark energy onto Morris-Thorne wormhole. Using three different parameterisation schemes and taking $H\, = \,{H_0}\, + \,{{{H_1}} \over t}$, we have derived the mass of the wormhole for all of the three parameterisation schemes that are able to get hold of both quintessence and phantom behaviour. With suitable choice of parameters, we observed that accreting scalar field dark energy models are increasing the mass of the wormhole in the phantom phase and the mass is decreasing in the quintessence phase. Finally, we have considered accretion with power law form of scale factor and without any parameterisation scheme for the equation of state parameter and observed the fact that phantom-type dark energy supports the existence of wormholes.


2008 ◽  
Vol 17 (02) ◽  
pp. 301-309 ◽  
Author(s):  
UTPAL MUKHOPADHYAY ◽  
SAIBAL RAY ◽  
S. B. DUTTA CHOUDHURY

A time-dependent phenomenological model of Λ, viz. [Formula: see text], is selected to investigate the Λ-CDM cosmology. The time-dependent form of the equation-of-state parameter ω is derived and it has been possible to obtain the sought-for flip of sign of the deceleration parameter q. The present age of the Universe, calculated for some specific values of the parameters, agrees very well with the observational data.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Abdul Jawad ◽  
Sadaf Butt ◽  
Shamaila Rani ◽  
Khadija Asif

AbstractIn the framework of fractal universe, the unified models of dark energy and dark matter are being presented with the background of homogenous and isotropic FLRW geometry. The aspects of fractal cosmology helps in better understanding of the universe in different dimensions. Relationship between the squared speed of the sound and the equation of state parameter is the key feature of these models. We have used constant as well as variable forms of speed of sound and express it as a function of equation of state parameter. By utilizing the four different forms of speed of sound, we construct the energy densities and pressures for these models and then various cosmological parameters like hubble parameter, EoS parameter, deceleration parameter and Om- diagnostic are investigated. Graphical analysis of these parameters show that in most of the cases EoS parameters and trajectories of Om-diagnostic corresponds to the quintessence like nature of the universe and the deceleration parameters represent accelerated and decelerated phase. In the end, we remark that cosmological analysis of these models indicates that these models correspond to different well known dark energy models.


2017 ◽  
Vol 95 (3) ◽  
pp. 262-266
Author(s):  
M. Sharif ◽  
Kanwal Nazir

The present paper is devoted to exploring the effect of bulk viscosity in the context of F(T, TG) gravity. We consider a time-dependent viscosity model with a particular expression of Hubble parameter. We evaluate viscous effective equation of state parameter for three well-known F(T, TG) models. The behavior of the accelerated expanding universe is explored graphically through the viscous equation of state parameter. This parameter indicates the phantom-dominated era as well as crosses the phantom divide line for all three models. We conclude that the universe shows a transition from quintessence to phantom region in the presence of bulk viscosity.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
M. Sharif ◽  
Aisha Siddiqa

This paper is devoted to study the cosmological behavior of homogeneous and isotropic universe model in the context of f(R,Tφ) gravity, where φ is the scalar field. For this purpose, we follow the first-order formalism defined by H=W(φ). We evaluate Hubble parameter, effective equation of state parameter (ωeff), deceleration parameter, and potential of scalar field for three different values of W(φ). We obtain phantom era in some cases for the early times. It is found that exponential expression of W(φ) yields ωeff independent of time for flat universe and independent of model parameter otherwise. It is concluded that our model corresponds to ΛCDM for both initial and late times.


2008 ◽  
Vol 17 (12) ◽  
pp. 2325-2335 ◽  
Author(s):  
JIE REN ◽  
XIN-HE MENG

The tachyon field in cosmology is studied in this paper by applying the generating function method to obtain exact solutions. The equation of state parameter of the tachyon field is [Formula: see text], which can be expressed as a function in terms of the redshift z. Based on these solutions, we propose some tachyon-inspired dark energy models to explore the properties of the corresponding cosmological evolution. The explicit relations between the Hubble parameter and redshift enable us to test the models with SNe Ia data sets easily. In this paper, we employ the SNe Ia data with the parameter [Formula: see text] measured from the SDSS and the shift parameter [Formula: see text] from WMAP observations to constrain the parameters in our models.


Sign in / Sign up

Export Citation Format

Share Document