scholarly journals Dynamics of variable dusk–dawn flow associated with magnetotail current sheet flapping

2021 ◽  
Vol 39 (6) ◽  
pp. 1037-1053
Author(s):  
James H. Lane ◽  
Adrian Grocott ◽  
Nathan A. Case ◽  
Maria-Theresia Walach

Abstract. We present Cluster spacecraft observations from 12 October 2006 of convective plasma flows in the Earth's magnetotail. Earthward flow bursts with a dawnward v⊥y component, observed by Cluster 1 (C1), are inconsistent with the duskward flow that might be expected at the pre-midnight location of the spacecraft. Previous observations have suggested that the dusk–dawn sense of the flow can be governed by the interplanetary magnetic field (IMF) By conditions, with the related “untwisting hypothesis” of magnetotail dynamics commonly invoked to explain this dependence, in terms of a large-scale magnetospheric asymmetry. In the current study, observations of the upstream solar wind conditions from OMNI, magnetic field observations by Cluster and ionospheric convection data using SuperDARN indicate a large-scale magnetospheric morphology consistent with positive IMF By penetration into the magnetotail. At the pre-midnight location of Cluster, however, the dawnward flow observed below the neutral sheet by C1 could only be explained by the untwisting hypothesis in a negative IMF By scenario. The Cluster magnetic field data also reveal a flapping of the magnetotail current sheet, a phenomenon known to influence dusk–dawn flow. Results from the curlometer analysis technique suggest that the dusk–dawn sense of the J×B force was consistent with localised kinks in the magnetic field and the flapping associated with the transient perturbations to the dusk–dawn flow observed by C1. We therefore suggest that the flapping overcame the dusk–dawn sense of the large-scale convection which we would expect to have been net duskward in this case. We conclude that invocation of the untwisting hypothesis may be inappropriate when interpreting intervals of dynamic magnetotail behaviour such as during current sheet flapping, particularly at locations where magnetotail flaring becomes dominant.

2021 ◽  
Author(s):  
James Henry Lane ◽  
Adrian Grocott ◽  
Nathan Anthony Case ◽  
Maria-Theresia Walach

Abstract. Previous observations have provided a clear indication that the dusk-dawn (v⊥y) sense of both slow (< 200 km s−1) and fast (> 200 km s−1) convective magnetotail flows is strongly governed by the Interplanetary Magnetic Field (IMF) By conditions. The related “untwisting hypothesis” of magnetotail dynamics is commonly invoked to explain this dependence, in terms of a large-scale magnetospheric asymmetry. In the current study, we present Cluster spacecraft observations from 12 October 2006 of earthward convective magnetotail plasma flows whose dusk-dawn sense disagrees with the untwisting hypothesis of IMF By control of the magnetotail flows. During this interval, observations of the upstream solar wind conditions from OMNI, and ionospheric convection data using SuperDARN, indicate a large-scale magnetospheric morphology consistent with positive IMF By penetration into the magnetotail. Inspection of the in-situ Cluster magnetic field data reveals a flapping of the magnetotail current sheet; a phenomenon known to influence dusk-dawn flow. Results from the curlometer analysis technique suggest that the dusk-dawn flow perturbations may have been driven by the J x B force associated with a dawnward-propagating flapping of the magnetotail current sheet, locally overriding the expected IMF By control of the flows. We conclude that invocation of the untwisting hypothesis may be inappropriate when interpreting intervals of dynamic magnetotail behaviour such as during current sheet flapping.


2009 ◽  
Vol 27 (1) ◽  
pp. 319-328 ◽  
Author(s):  
A. Runov ◽  
V. Angelopoulos ◽  
V. A. Sergeev ◽  
K.-H. Glassmeier ◽  
U. Auster ◽  
...  

Abstract. A sequence of magnetic field oscillations with an amplitude of up to 30 nT and a time scale of 30 min was detected by four of the five THEMIS spacecraft in the magnetotail plasma sheet. The probes P1 and P2 were at X=−15.2 and −12.7 RE and P3 and P4 were at X=−7.9 RE. All four probes were at −6.5>Y>−7.5 RE (major conjunction). Multi-point timing analysis of the magnetic field variations shows that fronts of the oscillations propagated flankward (dawnward and Earthward) nearly perpendicular to the direction of the magnetic maximum variation (B1) at velocities of 20–30 km/s. These are typical characteristics of current sheet flapping motion. The observed anti-correlation between ∂B1/∂t and the Z-component of the bulk velocity make it possible to estimate a flapping amplitude of 1 to 3 RE. The cross-tail scale wave-length was found to be about 5 RE. Thus the flapping waves are steep tail-aligned structures with a lengthwise scale of >10 RE. The intermittent plasma motion with the cross-tail velocity component changing its sign, observed during flapping, indicates that the flapping waves were propagating through the ambient plasma. Simultaneous observations of the magnetic field variations by THEMIS ground-based magnetometers show that the flapping oscillations were observed during the growth phase of a substorm.


2011 ◽  
Vol 29 (1) ◽  
pp. 147-156 ◽  
Author(s):  
M. Ugai

Abstract. As a sequence of Ugai (2010b), the present paper studies in detail the structure and dynamics of large-scale (principal) plasmoid, generated by the fast reconnection evolution in a sheared current sheet with no initial northward field component. The overall plasmoid domain is divided into the plasmoid reconnection region P and the plasmoid core region C. In the region P, the magnetized plasma with reconnected field lines are accumulated, whereas in the region C, the plasma, which was intially embedded in the current sheet and has been ejected away by the reconnection jet, is compressed and accumulated. In the presence of the sheared magnetic field in the east-west direction in the current sheet, the upper and lower parts of the reconnection region P are inversely shifted in the east-west directions. Accordingly, the plasmoid core region C with the accumulated sheared field lines is bent in the north-south direction just ahead of the plasmoid center x=XC, causing the magnetic field component in the north-south direction, whose sign is always opposite to that of the reconnected field lines. Therefore, independently of the sign of the initial sheared field, the magnetic field component Bz in the north-south direction has the definite bipolar profile around XC along the x-axis. At x=XC, the sheared field component has the peak value, and as the sheared fields accumulated in the region C become larger, the bipolar field profile becomes more distinct.


2006 ◽  
Vol 24 (6) ◽  
pp. 1479-1481 ◽  
Author(s):  
P. L. Israelevich ◽  
A. I. Ershkovich

Abstract. Multiple crossings of the magnetotail current sheet by a single spacecraft give the possibility to distinguish between two types of electric current density distribution: single-peaked (Harris type current layer) and double-peaked (bifurcated current sheet). Magnetic field measurements in the Jovian magnetic tail by Voyager-2 reveal bifurcation of the tail current sheet. The electric current density possesses a minimum at the point of the Bx-component reversal and two maxima at the distance where the magnetic field strength reaches 50% of its value in the tail lobe.


2001 ◽  
Vol 19 (10/12) ◽  
pp. 1579-1587 ◽  
Author(s):  
I. Krauklis ◽  
A. N. Fazakerley ◽  
C. J. Owen ◽  
P. J. Carter ◽  
M. W. Dunlop ◽  
...  

Abstract. On 1 October 2000, Cluster spacecraft Samba (Cluster 3) and Tango (Cluster 4) made an outbound crossing of the northern mid-altitude (4.7 RE) cusp region, moving roughly parallel to the noon meridian. We present preliminary observations from this interval made by the PEACE and FGM instruments. The interplanetary magnetic field at the magnetopause is estimated to have turned south at the time of our observations, based on ACE data as well as a rough estimate of the time taken for the solar wind to travel between ACE and the magnetopause. Cluster 3 encountered the low-latitude boundary layer (LLBL) between 12:20:30 to 12:26:00 UT, and the cusp region between 12:26:00 and 12:32:30 UT. Cluster 4 encountered the LLBL between 12:22:00 to 12:29:00 UT, and the cusp region between 12:29:00 and 12:38:00 UT. During the interval between the two spacecraft passages through these regions, the open/closed field line boundary was observed to move equatorward by 0.33° invariant latitude, while the latitudinal extent of the cusp region increased by 0.5°. Both of these observations are consistent with the ongoing reconnection at the sub-solar magnetopause. The magnetic field data indicate that Cluster encountered four field-aligned longitudinally extended current sheets. The most equatorward of these is consistent with the location of a Region 1 current sheet. Two current sheets were observed in the vicinity of the cusp region, though neither of these were thin current sheets. The fourth current sheet was observed in the mantle region and was largely unaffected by the latitudinal expansion of the cusp region.Key words. Magnetospheric physics (current systems; energetic particles, precipitating; magnetopause, cusp and boundary layers)


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Bin Zhou ◽  
Bingjun Cheng ◽  
Xiaochen Gou ◽  
Lei Li ◽  
Yiteng Zhang ◽  
...  

Abstract The High Precision Magnetometer (HPM) is one of the main payloads onboard the China Seismo-Electromagnetic Satellite (CSES). The HPM consists of two Fluxgate Magnetometers (FGM) and the Coupled Dark State Magnetometer (CDSM), and measures the magnetic field from DC to 15 Hz. The FGMs measure the vector components of the magnetic field; while the CDSM detects the magnitude of the magnetic field with higher accuracy, which can be used to calibrate the linear parameters of the FGM. In this paper, brief descriptions of measurement principles and performances of the HPM, ground, and in-orbit calibration results of the FGMs are presented, including the thermal drift and magnetic interferences from the satellite. The HPM in-orbit vector data calibration includes two steps: sensor non-linearity corrections based on on-ground calibration and fluxgate linear parameter calibration based on the CDSM measurements. The calibration results show a reasonably good stability of the linear parameters over time. The difference between the field magnitude calculated from the calibrated FGM components and the magnitude directly measured by the CDSM is just 0.5 nT (1σ) when the linear parameters are fitted separately for the day- and the night-side. Satellite disturbances have been analyzed including soft and hard remanence as well as magnetization of the magnetic torquer, radiation from the Tri-Band Beacon, and interferences from the rotation of the solar wing. A comparison shows consistency between the HPM and SWARM magnetic field data. Observation examples are introduced in the paper, which show that HPM data can be used to survey the global geomagnetic field and monitor the magnetic field disturbances in the ionosphere.


2009 ◽  
Vol 27 (6) ◽  
pp. 2457-2474 ◽  
Author(s):  
C. Forsyth ◽  
M. Lester ◽  
R. C. Fear ◽  
E. Lucek ◽  
I. Dandouras ◽  
...  

Abstract. Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the −YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002). We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005) and Erkaev et al. (2008). We find that the Erkaev et al. (2008) model gives the best fit to the observations.


Sign in / Sign up

Export Citation Format

Share Document