positron trapping
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 8)

H-INDEX

27
(FIVE YEARS 0)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 302
Author(s):  
Oleh Shpotyuk ◽  
Adam Ingram ◽  
Catherine Boussard-Pledel ◽  
Bruno Bureau ◽  
Zdenka Lukáčová Bujňáková ◽  
...  

The possibilities surrounding positronics, a versatile noninvasive tool employing annihilating positrons to probe atomic-deficient sub-nanometric imperfections in a condensed matter, are analyzed in application to glassy arsenoselenides g-AsxSe100−x (0 < x < 65), subjected to dry and wet (in 0.5% PVP water solution) nanomilling. A preliminary analysis was performed within a modified two-state simple trapping model (STM), assuming slight contributions from bound positron–electron (Ps, positronium) states. Positron trapping in g-AsxSe100−x/PVP nanocomposites was modified by an enriched population of Ps-decay sites in PVP. This was proven within a three-state STM, assuming two additive inputs in an overall trapping arising from distinct positron and Ps-related states. Formalism of x3-x2-CDA (coupling decomposition algorithm), describing the conversion of Ps-decay sites into positron traps, was applied to identify volumetric nanostructurization in wet-milled g-As-Se, with respect to dry-milled ones. Under wet nanomilling, the Ps-decay sites stabilized in inter-particle triple junctions filled with PVP replaced positron traps in dry-milled substances, the latter corresponding to multi-atomic vacancies in mostly negative environments of Se atoms. With increased Se content, these traps were agglomerated due to an abundant amount of Se-Se bonds. Three-component lifetime spectra with nanostructurally- and compositionally-tuned Ps-decay inputs and average lifetimes serve as a basis to correctly understand the specific “rainbow” effects observed in the row from pelletized PVP to wet-milled, dry-milled, and unmilled samples.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3373
Author(s):  
Halyna Klym ◽  
Ivan Karbovnyk ◽  
Sergei Piskunov ◽  
Anatoli I. Popov

Herein we demonstrate the specifics of using the positron annihilation lifetime spectroscopy (PALS) method for the study of free volume changes in functional ceramic materials. Choosing technological modification of nanostructured MgAl2O4 spinel as an example, we show that for ceramics with well-developed porosity positron annihilation is revealed through two channels: positron trapping channel and ortho-positronium decay. Positron trapping in free-volume defects is described by the second component of spectra and ortho-positronium decay process by single or multiple components, depending on how well porosity is developed and on the experimental configuration. When using proposed positron annihilation lifetime spectroscopy approaches, three components are the most suitable fit in the case of MgAl2O4 ceramics. In the analysis of the second component, it is shown that technological modification (increasing sintering temperature) leads to volume shrinking and decreases the number of defect-related voids. This process is also accompanied by the decrease of the size of nanopores (described by the third component), while the overall number of nanopores is not affected. The approach to the analysis of positron annihilation lifetime spectra presented here can be applied to a wide range of functional nanomaterials with pronounced porosity.


Author(s):  
Marek Gorgol ◽  
Radosław Zaleski ◽  
Agnieszka Kierys ◽  
Daniel Kamiński ◽  
Karol Strzałkowski ◽  
...  

Positron annihilation lifetime spectroscopy was used to examine grown-in defects in Cd1–x Zn x Te mixed crystals as a function of Zn content (x = 0, 0.07, 0.11, 0.49, 0.9, 0.95, 1) and measuring temperature. All samples were prepared using the high-pressure modified vertical Bridgman–Stockbarger method. The crystal structure and material phase were characterized by X-ray diffraction. The positron lifetime spectra reveal the presence of both open volumes and shallow traps regardless of the sample composition. In particular, both average and bulk lifetimes are found to be much higher in ternary alloys (CdZnTe) than those in binary systems (CdTe and ZnTe). This originates from distinct differences in average electron densities and the nature of open-volume defects between binary and ternary samples. Competition in positron trapping with increasing Zn content is observed between defects characteristic for both structural systems. Moreover, a clear correlation is shown between defects and the lattice thermal conductivity of studied samples. The applicability of the positron trapping model to CdTe-based materials is discussed.


2019 ◽  
Author(s):  
Laura Resch ◽  
Gregor Klinser ◽  
Wolfgang Sprengel ◽  
Roland Würschum

Sign in / Sign up

Export Citation Format

Share Document