pentaerythritol ester
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 1)

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Meiga Putri Wahyu Hardhianti ◽  
Rochmadi ◽  
Muhammad Mufti Azis

Esterification of rosin with pentaerythritol produces rosin pentaerythritol ester (RPE) which is widely used in paint, coating, and pressure-sensitive and hot-melt adhesive industries. Although RPE has excellent valuable applications and has been industrially produced, studies on the reaction kinetics have not been widely reported in the present literature. This work proposed a kinetic study of RPE synthesis by including a series of consecutive reactions forming mono-, di-, tri-, and tetra-ester with decarboxylation of rosin as a side reaction in the kinetics model. For esterification, the reaction rates were determined by the second-order kinetic model. The first-order kinetic order was proposed for decarboxylation. Kinetic experiments were performed at a temperature range of 260 °C to 290 °C. The initial molar ratio of pentaerythritol to rosin (in the mole of OH/COOH) used was between 0.8 and 1.2. A small amount of samples were withdrawn in certain time interval. The sample was analyzed to evaluate their acid and saponification number. Afterward, those experimental data were used to simulate and validate the proposed kinetic model. In general, the proposed model could capture the experimental data well. The resulting activation energies ranged from 65.81 to 129.13 kJ mol−1 for esterification and 233.00 kJ mol−1 for decarboxylation. This model also offers a new insight that correlates well with tetra-ester formation and the softening point.


2021 ◽  
pp. 51820
Author(s):  
Xinxin Gao ◽  
Pingping Jiang ◽  
Zheming Zhang ◽  
Zhenhua Li ◽  
Yuchao Li ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1171
Author(s):  
Cristina Pavon ◽  
Miguel Aldas ◽  
Juan López-Martínez ◽  
Joaquín Hernández-Fernández ◽  
Marina Patricia Arrieta

Completely biobased and biodegradable thermoplastic starch (TPS) based materials with a tunable performance were prepared for food packaging applications. Five blends were prepared by blending TPS with 10 wt%. of different pine resins derivatives: gum rosin (GR), disproportionated gum rosin (RD), maleic anhydride-modified gum rosin (CM), pentaerythritol ester of gum rosin (LF), and glycerol ester of gum rosin (UG). The materials were characterized in terms of thermo-mechanical behavior, surface wettability, color performance, water absorption, X-ray diffraction pattern, and disintegration under composting conditions. It was determined that pine resin derivatives increase the hydrophobicity of TPS and also increase the elastic component of TPS which stiffen the TPS structure. The water uptake study revealed that GR and LF were able to decrease the water absorption of TPS, while the rest of the resins kept the water uptake ability. X-ray diffraction analyses revealed that GR, CM, and RD restrain the aging of TPS after 24 months of aging. Finally, all TPS-resin blends were disintegrated under composting conditions during the thermophilic incubation period (90 days). Because of the TPS-resin blend’s performance, the prepared materials are suitable for biodegradable rigid food packaging applications.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2891
Author(s):  
Cristina Pavon ◽  
Miguel Aldas ◽  
Harrison de la Rosa-Ramírez ◽  
Juan López-Martínez ◽  
Marina P. Arrieta

Polybutylene adipate-co-terephthalate (PBAT) is a biodegradable polymer with good features for packaging applications. However, the mechanical performance and high prices of PBAT limit its current usage at the commercial level. To improve the properties and reduce the cost of PBAT, pine resin derivatives, gum rosin (GR) and pentaerythritol ester of GR (UT), were proposed as sustainable additives. For this purpose, PBAT was blended with 5, 10, and 15 wt.% of additives by melt-extrusion followed by injection moulding. The overall performance of the formulations was assessed by tensile test, microstructural, thermal, and dynamic mechanical thermal analysis. The results showed that although good miscibility of both resins with PBAT matrix was achieved, GR in 10 wt.% showed better interfacial adhesion with the PBAT matrix than UT. The thermal characterization suggested that GR and UT reduce PBAT melting enthalpy and enhance its thermal stability, improving PBAT processability. A 10 wt.% of GR significantly increased the tensile properties of PBAT, while a 15 wt.% of UT maintained PBAT tensile performance. The obtained materials showed higher hydrophobicity than neat PBAT. Thus, GR and UT demonstrated that they are advantageous additives for PBAT–resin compounding for rigid food packaging which are easy to process and adequate for industrial scalability. At the same time, they enhance its mechanical and hydrophobic performance.


2020 ◽  
Vol 150 (11) ◽  
pp. 3359-3367
Author(s):  
Shitao Yu ◽  
Huimin Zhang

2020 ◽  
Vol 10 (7) ◽  
pp. 2561 ◽  
Author(s):  
Miguel Aldas ◽  
Cristina Pavon ◽  
Juan López-Martínez ◽  
Marina Patricia Arrieta

Fully bio-based materials based on thermoplastic starch (TPS) were developed starting from corn starch plasticized with glycerol. The obtained TPS was further blended with five pine resin derivatives: gum rosin (GR), disproportionated gum rosin (dehydroabietic acid, RD), maleic anhydride modified gum rosin (CM), pentaerythritol ester of gum rosin (LF), and glycerol ester of gum rosin (UG). The TPS–resin blend formulations were processed by melt extrusion and further by injection moulding to simulate the industrial conditions. The obtained materials were characterized in terms of mechanical, thermal and structural properties. The results showed that all gum rosin-based additives were able to improve the thermal stability of TPS, increasing the degradation onset temperature. The carbonyl groups of gum rosin derivatives were able to interact with the hydroxyl groups of starch and glycerol by means of hydrogen bond interactions producing a significant increase of the glass transition temperature with a consequent stiffening effect, which in turn improve the overall mechanical performance of the TPS-resin injected moulded blends. The developed TPS–resin blends are of interest for rigid packaging applications.


Sign in / Sign up

Export Citation Format

Share Document