Experimental Investigation of the Confinement Effects in Radial-Radial Swirlers

2021 ◽  
Author(s):  
Fırat Kıyıcı ◽  
Mustafa Perçin

Abstract This experimental study investigates the effect of confinement ratio (CR) on the flow field of a counter-rotating radial-radial swirler. Two-dimensional two-component (2D2C) particle image velocimetry (PIV) measurements are performed at the mid-plane of the jet. Four different confinement ratios (i.e., 10.4, 23.4, 41.6 and unconfined) are considered at a swirl number of 1.2. The results reveal the presence of a central toroidal recirculation zone (CTRZ) in all cases extending inside the jet which indicates the existence of an adverse pressure gradient. For the unconfined swirling jet, the recirculation zone is small in size and exists at the exit of the jet. For the CR = 41.6 case, on the other hand, there exist two separate recirculation zones with the first one being similar to the unconfined case in terms of size and axial position, while the second one being larger in size and positioned at a more downstream location. Variation of the axial velocity along the centerline of the jet for this case indicates the presence of an adverse pressure gradient only in the close-jet region correlated with the first recirculation zone. For the smaller CR values, a single massive CTRZ emerges. This leads to increase in the expansion angle of the swirling jet as the CR decreases. Correspondingly, the radial velocity at the jet exit increases. For the confined cases with a single recirculation zone, the length and the width to cross-section ratio increase with the CR. On the other hand, the ratio of the reverse flow rate to total mass flow rate decreases with increasing CR values.

2011 ◽  
Vol 347-353 ◽  
pp. 2428-2431
Author(s):  
Bing Ge ◽  
Shu Sheng Zang ◽  
Pei Qing Guo

This paper focuses on investigating the flow structures in a multi-hole swirl burner. Using the Particle Image Velocimetry(PIV) technique, the experiment measured the velocity distributions of the swirling flame in a muti-hole burner. The experiments show that there is a central recirculation zone (CRZ) in the middle of the flow field, and two counter-rotating vortices exist along the centerline symmetrically. With fuel jet increase: the width of recirculating zone and axial mean velocity peaks changes little; length of recirculation zone and the biggest reverse flow velocity increases; the expansion angle of swirling jet increase at first, and then changes little; axial non-uniform coefficient of outlet reduces at first, and then increases. With airflow velocity increase: axial mean velocity peaks increase; the dimension of recirculating zone and the expansion angle of swirling jet are unchanged; axial non-uniform coefficient of outlet increases.The data from this experiment is helpful for optimization of the swirl burner design, and can be established as benchmarks for the development and validation of swirl combustion numerical simulations.


Author(s):  
Xuwen Qiu ◽  
David Japikse ◽  
Mark Anderson

Flow recirculation at the impeller inlet and outlet is an important feature that affects impeller performance, especially the power consumption at a very low flow rate. Although the mechanisms for this flow phenomenon have been studied, a practical model is needed for meanline modeling of impeller off-design performance. In this paper, a meanline recirculation model is proposed. At the inlet, the recirculation zone acts as area blockage to relieve the large incidence of the active flow at a low flow rate. The size of the blockage is estimated through a critical area ratio of an artificial “inlet diffuser” from the inlet to throat. The intensity of the reverse flow can then be calculated by assuming a linear velocity profile of meridional velocity in the recirculation zone. At the impeller outlet, a recirculation zone near the suction surface is established to balance the velocity difference on the pressure and suction sides of the blade. The size and the intensity of the outlet recirculation zone is assumed related to blade loading, which can be evaluated based on flow turning and Coriolis force. A few validation cases are presented showing a good comparison between test data and prediction by the model.


2018 ◽  
Vol 81 (1) ◽  
Author(s):  
Shiferaw Regassa Jufar ◽  
Tareq M Al-Shami ◽  
Ulugbek Djuraev ◽  
Berihun Mamo Negash ◽  
Mohammed Mahbubur Rahman

A numerical simulation of flow of oil blob through a capillary tube constriction is presented. The simulation was run in a 2D axisymmetric model. Water is injected at the inlet to mobilize oil blob placed near the capillary tube constriction. Transient flow images were used to understand the flow evolution process. Results from the study show that pulsed injection effectively assisted to squeeze out the oil blob through the capillary tube constriction with shorter time compared to continuous injection.  Pulsed injection reduced the time required for the first droplet to cross the capillary tube constriction by about 3 folds compared to continuous injection. In addition, the droplet that crossed the constriction is larger when the flow was pulsed. In both cases, there is a reverse flow in the opposite direction of the injection. However, the severity of the reverse flow is stronger in the case of continuous injection. Immediately downstream the constriction, there is an adverse pressure gradient zone during continuous injection which limits the mobility of droplet that crossed the constriction. However, in the case of pulsed injection, there is a favorable pressure gradient zone immediately downstream the constriction. This zone expedites mobility of droplets that cross the constriction by transporting them further downstream through suction effect. Apparently, pulsed injection eases off the adverse pressure gradient and allowed more volume of oil to pass through the constriction. Within about two periods of pulsation, 84% of original oil placed at the beginning crossed the constriction compared to only 35% in the case of continuous injection. Even though the same amount of water was injected in both cases, pulsed injection clearly altered the flow behavior. The observation from this study may be extended to more complex flows in order to tailor the method for certain specific applications, such as flow of residual oil through a reservoir.


1963 ◽  
Vol 3 (01) ◽  
pp. 85-94 ◽  
Author(s):  
P.R. Paslay ◽  
J.B. Cheatham

Abstract Rock stresses and steady-state flow rates induced by the pressure gradient associated with the flow of formation fluid into a borehole have been analytically determined for a permeable, elastic material saturated with an incompressible fluid. In this analysis, the material properties and loading are considered to he symmetric about the axis of the borehole and independent of axial position. For Case I the material is assumed to have uniform permeability in the radial direction, whereas for Case II the permeability is assumed to have been reduced in a localized region adjacent to the hole by either normal well completion and production operations or deliberate plugging during air drilling.Results of a numerical example indicate that, in the absence of plugging, the rock shear strength must be approximately two-thirds the formation fluid pressure in order to prevent rock failure. The required rock strength is high for small radial zones of plugging and decreases as the region of reduced permeability becomes larger; however, a depth of plugging can be reached beyond which there is no real gain in strength, although the flow rate can be further reduced. Introduction During normal production of oil from a well, it is often desirable to increase the production rate of the formation fluid by increasing the pressure gradient through the formation adjacent to the borehole. Depending upon the magnitude of this pressure gradient and strength of the rock material, this production-rate increase can cause sloughing of the hole wall. In many cases, the production-rate increase can result in excessive sand production, increased wear of production equipment, lost production time and expensive workover jobs.In addition, the phenomenon of increased rock bit penetration rate with the use of a gaseous instead of a liquid drilling fluid has been observed in oilfield drilling operations and experimentally demonstrated by various investigators for several years. The improvement obtained by employing this technique can be quite significant and offers a promising method for reducing drilling costs. However, air drilling is currently limited to geographical locations where high-capacity water-bearing formations are not encountered. This limitation has prevented widespread adoption of air-drilling techniques, because the water influx into the borehole interferes with efficient removal of the drilling cuttings and usually results in a condition such that the bit becomes "balled-up" or stuck in the hole.In an attempt to remove the water-intrusion limitation from air drilling, various chemical and mechanical water shut-off methods have been proposed. Goodwin and Teplitz suggested one such proposal whereby the permeability of the water - bearing rock structure was reduced in the vicinity of the borehole. Although the development of a shut-off method based upon this approach would certainly be welcomed by the oil industry, it is conceivable that, under certain conditions of the pressure gradient, strength of the rock material and depth of the modified permeability zone, a stress field can be created that will result in an unstable hole.As part of their study, an analytical solution is given for stresses in an idealized model of a hole and the surrounding rock material. The purpose of the present study is to extend the analysis of Goodwin and Teplitz to gain more insight into the details and consequences of excessive production rates and formation water shut-off. In particular, simplified models of these problems have been analytically examined, which makes possible the evaluation of the type of stress fields that can be anticipated as a result of these production and drilling practices.Both problems solved concern the determination of the steady-state volume flow rate of the formation fluid and the resulting steady-state stress and displacement distribution in a hollow, cylindrical configuration. The cylinder of Case I, corresponding to the production-rate problem, consists of a material with a constant permeability from the inside surface to the outside surface; the cylinder of Case II, corresponding to the water shut-off problem, consists of a material with a constant permeability from the inside surface to an intermediate concentric cylindrical surface and a second constant permeability from the intermediate surface to the outside surface. SPEJ P. 85^


2011 ◽  
pp. 63-69
Author(s):  
James R. Munis

We tend to assume that when 2 things are associated with each other, one must be causing the other. Nothing could be further from the truth, though. Because we're used to seeing the independent variable (‘cause’) plotted on the x-axis and the dependent variable (‘effect’) on the y-axis, this equation and graph suggest that the pressure gradient causes the paddle wheel flow rate. That, of course, is nonsense. This type of specious thinking is intended to warn you away from assuming that relationships necessarily imply causality. As you've learned already, pressure is not the same thing as energy, and pressure by itself cannot perform work or generate flow. However, flow generated by pressure-volume work (either by the heart or a mechanical pump) certainly can create pressure gradients. In this sort of chicken (flow) or egg (pressure) question, if the only energy-containing term is flow, then I'll say that the chicken came first.


2001 ◽  
Vol 446 ◽  
pp. 271-308 ◽  
Author(s):  
M. KALTER ◽  
H. H. FERNHOLZ

This paper is an extension of an experimental investigation by Alving & Fernholz (1996). In the present experiments the effects of free-stream turbulence were investigated on a boundary layer with an adverse pressure gradient and a closed reverse-flow region. By adding free-stream turbulence the mean reverse-flow region was shortened or completely eliminated and this was used to control the size of the separation bubble. The turbulence intensity was varied between 0.2% and 6% using upstream grids while the turbulence length scale was on the order of the boundary layer thickness. Mean and fluctuating velocities as well as spectra were measured by means of hot-wire and laser-Doppler anemometry and wall shear stress by wall pulsed-wire and wall hot-wire probes.Free-stream turbulence had a small effect on the boundary layer in the mild adverse-pressure-gradient region but in the vicinity of separation and along the reverse-flow region mean velocity profiles, skin friction and turbulence structure were strongly affected. Downstream of the mean or instantaneous reverse-flow regions highly disturbed boundary layers developed in a nominally zero pressure gradient and converged to a similar turbulence structure in all three cases at the end of the test section. This state was, however, still very different from that in a canonical boundary layer.


Author(s):  
Kasavajhula Naga Vasista ◽  
Sumit Kumar Mehta ◽  
Sukumar Pati

The micromixing of two fluids plays a vital role in lab-on-a-chip devices. For obtaining better mixing efficiency, we propose a micromixer using patchwise surface potential heterogeneity and wavy wall. We numerically investigate the hydrodynamic and mixing characteristics for flow through a microchannel with a straight top wall and wavy bottom wall. The primary flow is actuated by an external pressure-gradient and patches are placed at the top wall with positive zeta potential, such that the reversed electroosmotic actuation forms the recirculation zones close to the top wall. The streamlines, flow velocity, recirculation zone velocity, species concentration, flow rate, and mixing efficiency are investigated by varying the relative pressure-gradient strength, Debye parameter, zeta potential and wavy surface amplitude. Two different configurations are considered by placing the patches at the top wall, opposite to the peaks and valleys of the bottom wavy surface, respectively. It reveals that the recirculation zone velocity increases with the increase in both Debye parameter and surface amplitude, whereas it decreases with relative pressure-gradient strength near the patch surfaces. The flow rate decreases with the increase in zeta potential and we also identify the values of zeta potential for chocking of flow in the microchannel. It reveals that the mixing efficiency monotonically increases with surface amplitude, and the variation with zeta potential is non-monotonic. We also identify the range of zeta potential for which the value of mixing efficiency is higher than 90% for different configurations of the channel.


2002 ◽  
Vol 461 ◽  
pp. 1-24 ◽  
Author(s):  
M. HAMMACHE ◽  
F. K. BROWAND ◽  
R. F. BLACKWELDER

Wind tunnel experiments are performed on a body of revolution with aft-section designed to be an axisymmetric Stratford ramp (i.e. the flow over the ‘ramp’ experiences an adverse pressure gradient that causes it to be continuously on the verge of separation). Digital particle image velocimetry (DPIV) measurements over the ramp reveal a thick boundary layer that is characterized by self-similar velocity profiles with a large wake component and organized vorticity structures. The mean skin friction quickly drops to a value near zero.The sensitivity of the boundary layer to the degree of severity of the adverse pressure gradient is investigated by testing two additional ramps; one is slightly more conservative (i.e. less steep) than the Stratford ramp while the other is slightly more radical (i.e. steeper). In comparison to the Stratford ramp, the conservative ramp is characterized by a thinner boundary layer, with velocity profiles that start attached and gradually develop a large wake component, a much more gradual drop in the skin friction, and vorticity that is concentrated very close to the wall. On the other hand, the boundary layer over the radical ramp is unsteady and separates intermittently. Measurements of the drag force on each of the three bodies confirm that the Stratford ramp experiences the least amount of drag.Finally, additional data are gathered on the windward and leeward sides of the Stratford ramp when subjected to a small angle of attack. This case exhibits a more complex flow structure: the flow remains attached over the windward side of the ramp while separating over the leeward side.


2021 ◽  
Author(s):  
Shunya Takao ◽  
Shinichi Konno ◽  
Shinichiro Ejiri ◽  
Masahiro Miyabe

Abstract The objective of this research is to suppress pressure fluctuation by machining slits to the diffuser vanes and clarify its effect on the diffuser rotating stall from the hydrodynamics point of view. In order to investigate pressure fluctuations due to the diffuser rotating stall, both experiment and CFD (Computational Fluid Dynamics) calculations were conducted. In the experiment, two kinds of pump (one is original and another is with slit vanes) characteristics and time history of static pressure were measured. Then, data processing of wave form were conducted by FFT (Fast Fourier Transform) analysis. The static pressure transducers were mounted at casing-side of diffuser inlet in two passages. On the other hand, the CFD calculations were carried out to investigate the behavior of the diffuser rotating stall and the effect of slit vanes using a commercial CFD software, ANSYS CFX. A positive slope of head-flow characteristics is confirmed around at ϕ = 0.036 in the case of original pump. On the other hand, it has been shifted to lower flow rate, ϕ = 0.020 in the case of slit vanes. The periodic pressure fluctuations were observed for both cases at those flow rate, respectively. Then, it was confirmed that the diffuser rotating stall occurs and the number of cell is one from the co-relation between pressure wave form of two flow passages. The unsteady RANS (Reynolds-averaged Navier-Stokes) calculations were conducted for two kinds of pump. Then the internal flow within the diffuser were compared and the differences were clarified.


Author(s):  
Prachi Rojatkar ◽  
Milind A. Jog ◽  
San-Mou Jeng

A numerical study of turbulent flow through 3×3 multi swirler arrangement has been performed using the realizable k-ε turbulence model on a grid with about 19 million points. All co and alternate co/counter swirler configurations comprised of radial-radial swirler with counter rotating vanes are analyzed. The offset distances of swirler exit from the base wall of confinement of 0.02D and 0.31D are considered where D is the diameter of swirler exit. For both arrangements, a strong jet is issued as the flow exits individual swirl cup. Recirculation is observed at the walls and between each swirl cup along with the formation of central toroidal recirculation zone (CTRZ) at each individual swirler. It is observed that all co swirling arrangement has a stronger more compact individual CTRZ. On the other hand alternate co and counter arrangement produces more swirler-to-swirler interactions. When the offset between swirler exit and base wall of confinement is increased to 0.31D, longer but more compact CTRZ are formed at each swirler cup. The velocity gradient for 0.31D offset case is also higher than that of 0.02D. These differences in the flow field indicate better combustion performance, fuel breakup and flame anchoring for the higher offset case.


Sign in / Sign up

Export Citation Format

Share Document