Performance of Solar-driven Ejector Refrigeration System (SERS) as pre-cooling system for Air Handling Units in warm climates

Energy ◽  
2021 ◽  
pp. 121647
Author(s):  
Bernardo Peris Pérez ◽  
Miguel Ávila Gutiérrez ◽  
José Antonio Expósito Carrillo ◽  
José Manuel Salmerón Lissén
2011 ◽  
Vol 31 (5) ◽  
pp. 868-878
Author(s):  
Alexandre Tizzei ◽  
Carlos R. Meneghetti ◽  
Nelson L. Cappelli ◽  
Claudio K. Umezu

The process of cold storage chambers contributes largely to the quality and longevity of stored products. In recent years, it has been intensified the study of control strategies in order to decrease the temperature change inside the storage chamber and to reduce the electric power consumption. This study has developed a system for data acquisition and process control, in LabVIEW language, to be applied in the cooling system of a refrigerating chamber of 30m³. The use of instrumentation and the application developed fostered the development of scientific experiments, which aimed to study the dynamic behavior of the refrigeration system, compare the performance of control strategies and the heat engine, even due to the controlled temperature, or to the electricity consumption. This system tested the strategies for on-off control, PID and fuzzy. Regarding power consumption, the fuzzy controller showed the best result, saving 10% when compared with other tested strategies.


Author(s):  
E. E. Sundeen

The text deals with an evaluation of a gas turbine drive refrigeration system after four years of operation. Comparison is made of actual performance, operating, and maintenance costs with original system design concept, goals, and objectives.


2021 ◽  
Vol 267 ◽  
pp. 02008
Author(s):  
Li Guangpeng ◽  
Wang Qi ◽  
Shao Changbo

In this paper, the cascade refrigeration system and the load cooling system of the natural working medium are integrated as one unit system, which can meet the needs of different temperature zones of refrigerating in supermarkets. The concrete implementation scheme of the unit system with R717 as high temperature refrigerant, CO2 as low temperature refrigerant and carrier refrigerant was designed. According to the actual load of commercial super, the design and calculation of NH3 refrigerant system, CO2 refrigerant carrier system and CO2 cryogenic system were carried out. Through calculation and testing, the ideal refrigeration effect of the unit is obtained. Compared with the traditional unit, the energy saving is 20%, emission reduction (translated into CO2 emission) is 40%, and the operation cost is reduced by 20%.


Author(s):  
Nabeel M. Abdulrazzaq ◽  
Azzam S. Salman ◽  
Noble Anumbe ◽  
Amitav Tikadar ◽  
Saad K. Oudah ◽  
...  

Abstract In this paper, the performance of a new low-GWP refrigerant R513a was experimentally investigated, during spray cooling. A spray cooling system was designed to work as a sub-system within a closed-loop refrigeration system. The influence of chamber pressure on heat flux and heat transfer coefficient were experimentally investigated. A smooth plain copper surface heated by a cartridge heater was cooled by the refrigerant (R513a) while flowing through a nozzle in the spray chamber. The results showed that chamber pressure has a significant impact on the overall thermal performance of the spray cooling operation. It was also determined that higher chamber pressures resulted in higher thermal performance. The highest chamber pressure attained in this study was 0.6 MPa. Furthermore, the surface temperature of the heated surface increased due to the increase of the saturation temperature of the liquid over the surface.


Author(s):  
Mehmet Altinkaynak

Abstract According to the regulation of European Union laws in 2014, it was inevitable to switch to low global warming potential (GWP) fluids in the refrigeration systems where the R404A working fluid is currently used. The GWP of R404A is very high, and the potential for ozone depletion is zero. In this study, energetic and exergetic performance assessment of a theoretical refrigeration system was carried out for R404 refrigerant and its alternatives, comparatively. The analyses were made for R448A, R449A, R452A and R404A. The results of the analysis were presented separately in the tables and graphs. According to the results, the cooling system working with R448A exhibited the best performance with a coefficient of performance (COP) value of 2.467 within the alternatives of R404A followed by R449A and R452A, where the COP values were calculated as 2.419 and 2.313, respectively. In addition, the exergy efficiencies of the system were calculated as 20.62%, 20.22% and 19.33% for R448A, R449A and R452A, respectively. For the base calculations made for R404A, the COP of the system was estimated as 2.477, where the exergy efficiency was 20.71%. Under the same operating conditions, the total exergy destruction rates for R404A, R448A, R449A and R452A working fluids were found to be 3.201 kW, 3.217 kW, 3.298 kW and 3.488 kW, respectively. Furthermore, parametric analyses were carried out in order to investigate the effects of different system parameters such as evaporator and condenser temperature.


Author(s):  
José Enrique AMADOR-GARCÍA ◽  
Marco Antonio CRUZ-GÓMEZ ◽  
Tomás Aáron JUÁREZ-ZERÓN ◽  
José Alfredo MEJÍA-PEREZ

The refrigeration systems are of great importance in the daily life of the human being, due to the fact that it is necessary to have cold storage systems for different processes and perishable products preservation. The generated electric power as an alternative source has been used for refrigeration systems involved in sustainable development programs. The aims of this research were to characterize a cooling system powered by solar panels and that pretend to improve the quality of life. Refrigerating machines that use alternative sources of energy contribute to sustainable development, however, those that do not use it have a greater environmental impact. The solar refrigerator prototype has a quantitative-qualitative approach in deductive processes based on interpretation and data collection. This was carried out using own materials for the refrigerators construction that allow obtaining a compact configuration, presenting, pressure-volume operation curves and autonomy of the system with maintenance similar to conventional refrigeration systems. The refrigeration system is intended to be used in marginalized areas, low-income organizations and in support unprotected populations.


2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2583-2595 ◽  
Author(s):  
Anirban Sur ◽  
Randip Das ◽  
Ramesh Sah

The study deals with the complete dynamic analysis (numerical and practical) of an existing adsorption refrigeration system. The adsorption refrigeration setup is available at Indian School of Mines (Dhanbad, India), Mechanical engineering department. The system operates with activated carbon (as an adsorbent) and methanol (as refrigerant).Numerical model is established base on energy equation of the heat transfer fluid (water) and transient heat and mass transfer equations of the adsorbent bed. The input temperature of heat source is 90?C, which is very low compared to other low-grade energy input refrigeration system. The thermo-physical properties of an adsorptive cooling system (using activated carbon?methanol pair) are considered in this model. In this analysis influence of initial bed temperature (T1) on the bed performances are analysed mathematically and experimentally. The simulation and practical results of this system show that the cycle time decreases with increase in initial bed temperature and the minimum cycle time is 10.74 hours (884 minutes for practical cycle) for initial bed temperature of 40?C. Maximum system COP and specific cooling capacity are 0.436 and 94.63 kJ/kg of adsorbent under a condenser and evaporator temperatures of 35?C and 5?C, respectively. This analysis will help to make a comparison between simulated and experimental results of a granular bed adsorption refrigeration system and also to meet positive cooling needs in off-grid electricity regions.


2012 ◽  
Vol 614-615 ◽  
pp. 428-431
Author(s):  
Jian Jun Li ◽  
Zhi Yi Wang ◽  
Dong Zheng

A good deal of electricity consumption can be attributed to air-conditioning refrigeration systems. The percentage can be significantly higher if a cooling system is operating at low performance levels due to the presence of faults. The wavelet transform moves data from a time domain to a frequency domain with the wavelet as the basic function giving the localized features of the original signal in the fault detection. It is well known for its capability of treating the transient or time-related varying signals. The fault of heat load increase of the air-conditioning room can be predicted by wavelet transform through the test. Fault prediction in air-conditioning refrigeration system by wavelet transform can avoid defects of the conventional methods.


2018 ◽  
Vol 240 ◽  
pp. 05038
Author(s):  
Xiaowei Zhai ◽  
Yu Xu ◽  
Zhijin Yu ◽  
Kai Wang

Liquid CO2 can absorb heat via phase change and generates cryogenic CO2 which can effectively solve the problem of thermal damage in the deep coal mining process. The CO2 cycle refrigeration device system is designed to effectively cool down the working surface of the mine in which CO2 is cyclically utilized. COMSOL Multiphysics simulation software is used to characterize the CO2 cycle refrigeration system in mine of the heat transfers process between CO2 and the air flow in tunnel. The results show that the reduction of steady air flow temperature reach at 8 °C in the tunnel by CO2 cycle refrigeration system before the air flow into work face. we analyzed the influence of main parameters on refrigeration system and gets the results:1) The refrigeration system get higher cooling efficiency of cryogenic CO2 when the ventilation velocity of local fan is increased, and the temperature of outlet CO2 and steady air flow in tunnel has increased; 2) Increasing the CO2 flow, the refrigeration effect of the system is enhanced obviously, but CO2 refrigeration capacity utilization ratio is reduced; 3) Increasing the length of helical tube would led to use CO2 refrigerating capacity more efficiently; 4) The cooling effect of the cooling system can be improved obviously by lowering the the CO2 cooling temperature.


Lubricants ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 76
Author(s):  
José Cabrera César ◽  
Jean Caratt Ortiz ◽  
Guillermo Valencia Ochoa ◽  
Rafael Ramírez Restrepo ◽  
José R. Nuñez Alvarez

A single effect LiBr–H2O absorption refrigeration system coupled with a solar collector and a storage tank was studied to develop an assessment tool using the built-in App Designer in MATLAB®. The model is developed using balances of mass, energy, and species conservation in the components of the absorption cooling system, taking into account the effect of external streams through temperature and pressure drop. The whole system, coupled with the solar energy harvesting arrangement, is modeled for 24 h of operation with changes on an hourly basis based on ambient temperature, cooling system load demand, and hourly solar irradiation, which is measured and recorded by national weather institutes sources. Test through simulations and validation procedures are carried out with acknowledged scientific articles. These show 2.65% of maximum relative error on the energy analysis with respect to cited authors. The environmental conditions used in the study were evaluated in Barranquilla, Colombia, with datasets of the Institute of Hydrology, Meteorology and Environmental Studies (IDEAM), considering multiannual average hourly basis solar irradiation. This allowed the authors to obtain the behavior of the surface temperature of the water in the tank, COP, and exergy efficiency of the system. The simulations also stated the generator as the biggest source of irreversibility with around 45.53% of total exergy destruction in the inner cycle without considering the solar array, in which case the solar array would present the most exergy destruction.


Sign in / Sign up

Export Citation Format

Share Document