Effect of Inlet Duct Design on Fan Performance and Static Pressure Measurements of Indoor Air Handling Units (ASHRAE RP-1743)

Author(s):  
Khaled I. Alghamdi ◽  
Christian K. Bach
Author(s):  
A. M. Basol ◽  
R. S. Abhari

This study numerically investigated the effects of the geometry modifications in the vicinity of the shroud cavity area of a high flow coefficient, multi-stage, inline centrifugal compressor on its efficiency. The modifications in the shroud cavity area cover the lean of the seal teeth geometries and their streamwise positioning. The baseline four teeth seal geometry has been modified which resulted in 15 % reduction in the leakage mass flow and increased the compressor’s efficiency by 0.17 % by even reducing the number of the teeth to three. Modifications in the radial inlet duct geometry aimed to reduce the pressure difference across the shroud cavity by providing further static pressure recovery at the shroud cavity outlet. The modified inlet duct design resulted in a further 0.13 % rise in efficiency in spite of the minor 4 % additional drop in the leakage mass flow. The modified inlet duct performed better only in presence of the shroud cavity leakage flow. Excluding the leakage the modified inlet duct resulted in a lower efficiency value compared to the efficiency value obtained with the existing inlet duct. These findings point out a possible reduction in the mixing loss between the main flow and the shroud cavity leakage flow with the modified inlet duct design which reduced the Mach number level close to the shroud side wall due to the increased static pressure. As the final conclusion on the design of the radial compressors this work shows the importance of considering the leakages at the early stages of the compressor design even deciding on the meridional flow path.


2020 ◽  
Vol 5 (1) ◽  
pp. 37-41
Author(s):  
Ardit Gjeta ◽  
Lorenc Malka

In this paper, the effect of the outlet surface area of the spiral casing on the performance of a centrifugal fan was investigated using open source CFD software OpenFOAM [1]. An automized loop with RANS and data post-processing is set up using Matlab, for allowing a large number of parameter variations. The effect was analyzed as a function of total pressure loss and static pressure recovery coefficient and on total efficiency as well.


2018 ◽  
Vol 28 (5) ◽  
pp. 1134-1155 ◽  
Author(s):  
Pierre Grenson ◽  
Eric Garnier

Purpose This paper aims to report the attempts for predicting “on-the-fly” flow distortion in the engine entrance plane of a highly curved S-duct from wall static pressure measurements. Such a technology would be indispensable to trigger active flow control devices to mitigate the intense flow separations which occur in specific flight conditions. Design/methodology/approach Evaluation of different reconstruction algorithms is performed on the basis of data extracted from a Zonal Detached Eddy Simulation (ZDES) of a well-documented S-Duct (Garnier et al., AIAA J., 2015). Contrary to RANS methods, such a hybrid approach makes unsteady distortions available, which are necessary information for reconstruction algorithm assessment. Findings The best reconstruction accuracy is obtained with the artificial neural network (ANN) but the improvement compared to the classical linear stochastic estimation (LSE) is minor. The different inlet distortion coefficients are not reconstructed with the same accuracy. KA2 coefficient is finally identified as the more suited for activation of the control device. Originality/value LSE and its second-order variant (quadratic stochastic estimation [QSE]) are applied for reconstructing instantaneous stagnation pressure in the flow field. The potential improvement of an algorithm based on an ANN is also evaluated. The statistical link between the wall sensors and 40-Kulite rake sensors are carefully discussed and the accuracy of the reconstruction of the most used distortion coefficients (DC60, RDI, CDI and KA2) is quantified for each estimation technique.


AIAA Journal ◽  
1971 ◽  
Vol 9 (2) ◽  
pp. 345-347 ◽  
Author(s):  
L. H. BACK ◽  
R. F. CUFFEL

Author(s):  
K-H Lee ◽  
T Setoguchi ◽  
S Matsuo ◽  
H-D Kim

The present study addresses experimental investigations of the near-field flow structures of an underexpanded sonic, dual, coaxial, swirl jet. The swirl stream is discharged from the secondary annular nozzle and the primary inner nozzle provides the underexpanded free jets. The interactions between the secondary swirl and primary underexpanded jets are quantified by a fine pitot impact and static pressure measurements and are visualized using a shadowgraph optical method. The pressure ratios of the secondary swirl and primary underexpanded jets are varied below 7.0. Experiments are conducted to investigate the effects of the secondary swirl stream on the primary underexpanded jets, compared with the secondary stream of no swirl. The results show that the presence of an annular swirl stream causes the Mach disc to move further downstream, with an increased diameter, and remarkably reduces the fluctuations of the impact pressures in the underexpanded sonic dual coaxial jet, compared with the case of the secondary annular stream with no swirl.


1999 ◽  
Vol 121 (3) ◽  
pp. 291-295 ◽  
Author(s):  
S. Bolpaire ◽  
J. P. Barrand

The operational range and the performances of pumps are limited by the occurrence of backflow and prerotation in the suction pipe as the flow rate is reduced. This paper presents the study of static pressure measurements and visualizations in the suction pipe, near the inlet of a centrifugal pump, at partial flow rates, in steady conditions, and during a fast start-up of the pump. The tests were carried out in water on the DERAP© test loop of the ENSAM Lille laboratory. Standard methods allowed to determine the recirculation critical flow rate. A visualization method showed that the axial extent of the recirculation and the prerotation with the flow rate is considerably reduced during a fast start-up compared to steady conditions.


Author(s):  
Mario Urdaneta ◽  
Alfonso Ortega ◽  
Russel V. Westphal

Extensive experiments were performed aimed at obtaining physical insight into the behavior of in-line pin fin heat sinks with pins of square cross-section. Detailed pressure measurements were made inside an array of square pins in order to isolate the inlet, developing, fully developed, and exit static pressure distributions as a function of row number. With this as background data, overall pressure drop was measured for a self-consistent set of aluminum heat sinks in side inlet side exit flow, with top clearance only. Pin heights of 12.5 mm, 17.5 mm, and 22.5 mm, pin pitch of 3.4 mm to 6.33 mm, and pin thickness of 1.5 mm, 2 mm and 2.5mm were evaluated. Base dimensions were kept fixed at 25 × 25 mm. In total, 20 aluminum heat sinks were evaluated. A “two-branch by-pass model” was developed, by allowing inviscid acceleration of the flow in the bypass section, and using pressure loss coefficients obtained under no bypass conditions in the heat sink section. The experimental data compared well to the proposed hydraulic models. Measurements in the array of pins showed that full development of the flow occurs after nine rows, thus indicating that none of the heat sinks tested could be characterized as fully-developed.


2007 ◽  
Vol 43 (6) ◽  
pp. 907-916 ◽  
Author(s):  
D. Costaschuk ◽  
J. Elsnab ◽  
S. Petersen ◽  
J. C. Klewicki ◽  
T. Ameel

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Fangyuan Lou ◽  
John Charles Fabian ◽  
Nicole Leanne Key

This paper investigates the aerodynamics of a transonic impeller using static pressure measurements. The impeller is a high-speed, high-pressure-ratio wheel used in small gas turbine engines. The experiment was conducted on the single stage centrifugal compressor facility in the compressor research laboratory at Purdue University. Data were acquired from choke to near-surge at four different corrected speeds (Nc) from 80% to 100% design speed, which covers both subsonic and supersonic inlet conditions. Details of the impeller flow field are discussed using data acquired from both steady and time-resolved static pressure measurements along the impeller shroud. The flow field is compared at different loading conditions, from subsonic to supersonic inlet conditions. The impeller performance was strongly dependent on the inducer, where the majority of relative diffusion occurs. The inducer diffuses flow more efficiently for inlet tip relative Mach numbers close to unity, and the performance diminishes at other Mach numbers. Shock waves emerging upstream of the impeller leading edge were observed from 90% to 100% corrected speed, and they move towards the impeller trailing edge as the inlet tip relative Mach number increases. There is no shock wave present in the inducer at 80% corrected speed. However, a high-loss region near the inducer throat was observed at 80% corrected speed resulting in a lower impeller efficiency at subsonic inlet conditions.


Author(s):  
Jason E. Dees ◽  
James A. Tallman ◽  
Michael A. Heminger ◽  
Daniel Wilde

This study compares surface pressure measurements and predictions for a high pressure turbine first-stage nozzle vane. The surface pressure measurements were taken in a 3D annular cascade, consisting of four airfoils and five passages. The cascade was uncooled, axisymmetric at both inner and outer endwalls, and reproduced the design intent Reynolds and Mach numbers of the real engine component. Static pressure measurements were taken along the airfoil profile at 15, 50, and 85% span, with duplicate midspan measurements across the four airfoils for assessing the tangential periodicity of the flow. Static pressure measurements were also taken on the inner and outer endwall surfaces of the center airfoil passage, with 40 measurement points uniformly distributed over each endwall. Three methods of surface pressure prediction were compared with the data: (1) a 2D inviscid CFD solution of a single airfoil passage at fixed spanwise locations, (2) a 3D RANS CFD solution of a single airfoil passage, and (3) a 3D RANS CFD solution of the full five-passage cascade domain. Both of the single-passage solutions assumed flowfield periodicity in the tangential direction and compared favorably to the center passage airfoil data. This finding suggested that the cascade center passage was sufficiently representative of the full-annulus turbomachine environment and validated the cascade for further experimental studies. The adjacent airfoil pressure measurements quantified the passage-to-passage variation in the cascade flowfield, and the 3D full-cascade CFD compared favorably with the peripheral airfoil data. The full-cascade CFD also compared favorably with the data on both endwalls: with an average and maximum deviation of 0.5 and 2%, respectively. These findings provide confidence in the 3D CFD methods for use in determining local flow rates from cooling/leakage geometry, and serve as an important first step toward validating the methods for real-engine blockage effects like coolant and endwall contouring.


Sign in / Sign up

Export Citation Format

Share Document