twin tunnel
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 33)

H-INDEX

12
(FIVE YEARS 3)

UKaRsT ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 252
Author(s):  
Wellyanto Wijaya ◽  
Paulus Pramono Rahardjo ◽  
Aswin Lim

Cisumdawu Tunnel is a twin tunnel 472 m long located in Sumedang. Twin tunnel construction can cause additional ground settlement and tunnel deformation. The tunnel construction method used is the New Austrian Tunneling Method (NATM) and umbrella grouting protection system. The principle of NATM is to maximize surrounding soil capacity to support its weight and balance the stresses around the tunnel. Investigation of tunnel deformation is important to know tunnel structure behavior and avoid possible failure. This research aims to know tunnel deformation and the effect of twin tunnel construction on the deformation and ground settlement. The data used such as tunnel geometry, monitoring data, pressuremeter test, and the drilling test. The 3D analysis will be performed for a single tunnel and twin tunnel using Midas GTS-NX, and monitoring data will be used for verification analysis. The 3D FEM help to model the soil condition and construction stage according to the actual condition. The analysis results show the maximum tunnel deformation that occurs from the beginning of the tunnel construction is 12.64cm. If the deformation starts to be calculated following the monitoring reading time, after the excavation at the monitoring point, the maximum deformation of the analysis results is 3.3&4.4cm, where the monitoring shows maximum deformation of 3.3&4.3cm. Through the results, it can be said that the analysis using 3D FEM with pressuremeter test parameter represents actual conditions. Twin tunnel construction side-by-side increases ground settlement and lateral tunnel deformation significantly. Hence, it shows that tunnel analysis using 3D FEM recommends for future investigation of tunnel deformation.


2021 ◽  
Vol 11 (23) ◽  
pp. 11506
Author(s):  
Parvesh Kumar ◽  
Amit Kumar Shrivastava

This paper presents a new testing method for the problems encountered in field testing. To this end, single-tunnel and twin-tunnel small-scale rock models are prepared in the laboratory. A new methodology is proposed to encounter problems that are faced during field testing. The test results show that rock strength characteristics, overburden pressure, and tunnel spacing have important effects on the stability of underground structures. For rocks with poor strength properties, the damage degree is greater. When the strength property of rock changes, the deformation value of unlined tunnels changes from 21.05% to 27.58%, while that of lined tunnels changes from 11% to 21.42%. Also, in the twin tunnel, the deformation value reduces from 20% to 15.78% when the spacing between the tunnels is increased. For the measurement of stress and deformation in tunnels, the results obtained from experiments are analyzed. The method adopted in this study helps determine the tunnel’s design parameters to make it safe under overlying static loads. Finally, the key factors affecting the stability of underground structures are determined by simulating the field conditions through experimental research.


2021 ◽  
Vol 861 (5) ◽  
pp. 052112
Author(s):  
Un Chol Han ◽  
Chung Il Kim ◽  
Gun Ui Hong ◽  
Il Yong Kang

2021 ◽  
Vol 30 (1) ◽  
pp. 3-15
Author(s):  
Kamel Asker ◽  
Mohamed Bahr ◽  
Ahmed El-Attar ◽  
Mohamed Fouad

A set of parametric studies by using the Abaqus software is conducting to investigate the effective method to seal the CWO sewer from the tunneling process. These methods include: (i) two deep grouted walls, (ii) adjacent slurry piles, (iii) bored reinforced concrete piles assisted with slurry piles, and (iv) grouted block confining the twin tunnel wall. Based on the results of parametric studies. Most of the protective studied technique was effective on reducing the tunneling effect on the ground movements.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shicheng Sun ◽  
Chuanxin Rong ◽  
Houliang Wang ◽  
Linzhao Cui ◽  
Xin Shi

Shielding tunnel construction always has negative impacts on the surrounding buildings. Because of repeated disturbances caused by the construction, more attention should be paid to the impacts of the nonsynchronous construction of a twin-tunnel. In this research, a three-dimensional model was established to simulate the construction process of a twin-tunnel in a section of the Hefei No. 4 metro line, and the calculation results were validated with the measured settlement data. Based on the model, the ground settlement and the existing pipeline responses were studied in detail. The results showed that, after the first tunnel (FT) construction, the settlement curves conformed to a Gaussian distribution. Additionally, after the second tunnel (ST) construction, the final settlement curves were no longer completely symmetrical. The influences of the twin-tunnel space and the pipeline-soil relative stiffness on the settlements were further studied. The results showed that the final settlement curves of the ground surface and the pipeline were mainly W-shaped, U-shaped, and V-shaped. As the twin-tunnel space increased and the pipeline-soil relative stiffness decreased, the settlement curve gradually changed from V-shaped to W-shaped. C was defined as the ratio of two maximum settlements in the W-shaped settlement curve. As the space increased, C started to decrease from 1 and then increased to 1.


Sadhana ◽  
2021 ◽  
Vol 46 (1) ◽  
Author(s):  
Shaokun Ma ◽  
Zhibo Duan ◽  
Yu Shao ◽  
Zhen Huang ◽  
Ying Liu ◽  
...  

Author(s):  
Changgui Li ◽  
Junbo Zhao ◽  
Juan Hu ◽  
Xiuying Ju ◽  
Xiaoxu Tian

HBRC Journal ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 137-156
Author(s):  
Heba Kamal ◽  
Manar Hussein ◽  
Adel Akl

Sign in / Sign up

Export Citation Format

Share Document