scholarly journals Physical Investigation of Deformation Behaviour of Single and Twin Tunnel under Static Loading Condition

2021 ◽  
Vol 11 (23) ◽  
pp. 11506
Author(s):  
Parvesh Kumar ◽  
Amit Kumar Shrivastava

This paper presents a new testing method for the problems encountered in field testing. To this end, single-tunnel and twin-tunnel small-scale rock models are prepared in the laboratory. A new methodology is proposed to encounter problems that are faced during field testing. The test results show that rock strength characteristics, overburden pressure, and tunnel spacing have important effects on the stability of underground structures. For rocks with poor strength properties, the damage degree is greater. When the strength property of rock changes, the deformation value of unlined tunnels changes from 21.05% to 27.58%, while that of lined tunnels changes from 11% to 21.42%. Also, in the twin tunnel, the deformation value reduces from 20% to 15.78% when the spacing between the tunnels is increased. For the measurement of stress and deformation in tunnels, the results obtained from experiments are analyzed. The method adopted in this study helps determine the tunnel’s design parameters to make it safe under overlying static loads. Finally, the key factors affecting the stability of underground structures are determined by simulating the field conditions through experimental research.

1979 ◽  
Vol 16 (1) ◽  
pp. 108-120 ◽  
Author(s):  
K. Y. Lo ◽  
M. Hori

Uniaxial compression tests were performed on sedimentary rocks of five different geological formations at various sites in southern Ontario. The deformation behaviour is analysed in terms of the cross-anisotropic elastic theory and typical sets of five independent parameters for each rock unit have been obtained. It is shown that some of the rock types are significantly anisotropic both in deformation and strength behaviour. The practical relevance of the results in the analysis and design of underground structures in these rocks is discussed.


2021 ◽  
Author(s):  
Kotteeswaran Santhanam ◽  
Ravi Ramadoss

Abstract Heritage structures are valuable monuments to describe the culture and traditions of the country. These heritage structures get deformed in today's scenario by natural or artificial disasters. Hence, to preserve these heritage structures, restoration was introduced to restore the ancient building with new binding agents. Rehabilitation can take place only by analysing the properties of existing structures. Based on the existing structure properties, the alternative binding agent selected; can regain the same strength and shape of the heritage structures. Based on these, the restoration of Alamparai fort was performed by analysing the fort materials using mortar strength analysis by core-drilling, double punch test, and small-scale masonry test. The arch properties are also analysed by performing seismic analysis based on the mortar strength properties. The stability analysis of the organic and existing materials shows that Gur and haritaki is the best agent for restoring the fort. Hence, the mortar strength and seismic analysis of these materials performed using diagonal shear test and seismic modelling of the fort. The proposed material strength tests results indicate that the Gur and Haritaki is the best agent to restore the fort. The fort was restored with these materials; it survived in Nivar cyclone crossed on 26th November 2020.


2014 ◽  
Vol 955-959 ◽  
pp. 3393-3399 ◽  
Author(s):  
Wei Zheng ◽  
Yan Ming Yang ◽  
Yun Long Li ◽  
Jian Qiu Zheng

The process technique and design parameters of project of Solar Ozonic Ecological Sewage Treatment Plant (short for SOESTP) which consists of anaerobic reactor, horizontal subsurface flow (HSSF) constructed wetlands(CWs) and the combination of solar power and ozone disinfection are described, the paper further examines the removal efficiency for treating rural domestic sewage, running expense and recycling ability of product water. The results show that the average percentage removal values of CODcr,BOD5,SS,TN,NH3-N,TP range from 95.6% to 98.0%, 96.0% to 98.7%, 93.1% to 96.1%, 97.0% to 98.9%, 96.9% to 99.5%, 98.2% to 99.6%, respectively, the reduction of fecal coliform (FC) reaches 99.9%, the effluent quality meets the first level A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant(GB18918-2002). The running cost of SOESTP is 0.063yuan/ m3, saves much more than traditional sewage treatment, and the ozone water obtained from the reservoir will be an ideal choice for disinfection .The system has characteristics of easy manipulation, low operating cost, achieving advanced water, energy conservation and environment protection, is thought to be very suitable for use as the promotion of rural small - scale sewage treatment.


Robotica ◽  
2021 ◽  
pp. 1-14
Author(s):  
Hongkai Li ◽  
Xianfei Sun ◽  
Zishuo Chen ◽  
Lei Zhang ◽  
Hongchao Wang ◽  
...  

Abstract Inspired by gecko’s adhesive feet, a wheeled wall climbing robot is designed in this paper with the synchronized gears and belt system acting as the wheels by considering both motion efficiency and adhesive capability. Adhesion of wheels is obtained by the bio-inspired adhesive material wrapping on the outer surface of wheels. A ducted fan mounted on the back of the robot supplies thrust force for the adhesive material to generate normal and shear adhesion force whilemoving on vertical surfaces. Experimental verification of robot climbing on vertical flat surface was carried out. The stability and the effect of structure design parameters were analyzed.


2013 ◽  
Vol 69 (4) ◽  
pp. 727-738 ◽  
Author(s):  
Yanling Li ◽  
Roger W. Babcock

Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.


1955 ◽  
Vol 1 (5) ◽  
pp. 299-311 ◽  
Author(s):  
R. Steel ◽  
C. P. Lentz ◽  
S. M. Martin

Factors affecting the production of citric acid in the submerged fermentation of ferrocyanide-treated beet molasses by Aspergillus niger were studied in 2.5 and 36 liter fermenters. The small fermenters were used to determine the effects of changes in sterilization technique, phosphate supplement, ferrocyanide treatment, inoculum level, initial pH, fermentation temperature, and aeration rate. The relation between ferrocyanide concentration and inoculum level was also studied. Four different samples of molasses were fermented successfully. An average yield of 8.2% citric acid (64% conversion) was obtained from 51 small-scale fermentations. Comparable yields were obtained in the large fermenters under comparable conditions. Most of the information obtained with the small fermenters was applicable to the larger-scale fermenters, but in the latter the fermentation was significantly more stable. Aeration was the main problem in the scale-up and aeration rates approximately double those calculated on a fermenter cross-sectional area basis were required for comparable results in the large fermenters.


1987 ◽  
Vol 35 (2) ◽  
pp. 135 ◽  
Author(s):  
RB Hacker

Species responses to grazing and environmental factors were studied in an arid halophytic shrubland community in Western Australia. The grazing responses of major shrub species were defined by using reciprocal averaging ordination of botanical data, interpreted in conjunction with a similar ordination of soil chemical properties and measures of soil erosion derived from large-scale aerial photographs. An apparent small-scale interaction between grazing and soil salinity was also defined. Long-term grazing pressure is apparently reduced on localised areas of high salinity. Environmental factors affecting species distribution are complex and appear to include soil salinity, soil cationic balance, geomorphological variation and the influence of cryptogamic crusts on seedling establishment.


2018 ◽  
Vol 70 (4) ◽  
pp. 789-804 ◽  
Author(s):  
M.M. Shahin ◽  
Mohammad Asaduzzaman Chowdhury ◽  
Md. Arefin Kowser ◽  
Uttam Kumar Debnath ◽  
M.H. Monir

Purpose The purposes of the present study are to ensure higher sustainability of journal bearings under different applied loads and to observe bearing performances such as elastic strain, total deformation and stress formation. Design/methodology/approach A journal bearing test rig was used to determine the effect of the applied load on the bearing friction, film thickness, lubricant film pressure, etc. A steady-state analysis was performed to obtain the bearing performance. Findings An efficient aspect ratio (L/D) range was obtained to increase the durability or the stability of the bearing while the bearing is in the working condition by using SAE 5W-30 oil. The results from the study were compared with previous studies in which different types of oil and water, such as Newtonian fluid (NF), magnetorheological fluid (MRF) and nonmagnetorheological fluid (NMRF), were used as the lubricant. To ensure a preferable aspect ratio range (0.25-0.50), a computational fluid dynamics (CFD) analysis was conducted by ANSYS; the results show a lower elastic strain and deformation within the preferable aspect ratio (0.25-0.50) rather than a higher aspect ratio using the SAE 5W-30 oil. Originality/value It is expected that the findings of this study will contribute to the improvement of the bearing design and the bearing lubricating system.


Sign in / Sign up

Export Citation Format

Share Document