A variational approach to determination of maximum throw-able workspace of robotic manipulators in optimal ball pitching motion

Author(s):  
Mohsen Asgari ◽  
Amin Nikoobin

This study is aimed at finding the entire points that a manipulator can launch an object onto by an optimal motion. These points are called throw-able workspace, which are located outside the reachable workspace of the robot. From an optimization point of view, some throwing parameters can be found to decrease motion cost. In this paper, by using this concept, the best combination of throwing and trajectory planning is attempted. The proposed method consists of two basic ideas: first, defining the optimal throwing problem as the optimal control problem (OCP) and solving it using the indirect solution approach based on the fundamental lemma of calculus of variations. To achieve the best release angle and speed, the throwing equation of motion is applied as a moving-end boundary condition (BC). Second, based on the obtained optimal throwing, an algorithm is presented to calculate the maximum throw-able workspace. The simulation results demonstrate the effectiveness of the proposed framework for both single link and spatial two-degree-of-freedom throwing robots.


1973 ◽  
Vol 95 (2) ◽  
pp. 624-628 ◽  
Author(s):  
P. J. Starr

A class of dynamic synthesis problems is introduced which treats the determination of the constraint paths between specified positions for problems involving rigid body transfer. These paths are so determined as to optimize some quality of the dynamic behavior as the device moves under the action of external forces. A solution technique is presented which transforms the problem into an optimal control problem with the basic ideas being developed using a single link device with one unknown path. It is assumed that the resulting optimal paths could then be realized using existing methods of kinematic synthesis.



Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 150
Author(s):  
Andrei Marius Mihalache ◽  
Gheorghe Nagîț ◽  
Laurențiu Slătineanu ◽  
Adelina Hrițuc ◽  
Angelos Markopoulos ◽  
...  

3D printing is a process that has become widely used in recent years, allowing the production of parts with relatively complicated shapes from metallic and non-metallic materials. In some cases, it is challenging to evaluate the ability of 3D printers to make fine details of parts. For such an assessment, the printing of samples showing intersections of surfaces with low angle values was considered. An experimental plan was designed and materialized to highlight the influence of different factors, such as the thickness of the deposited material layer, the printing speed, the cooling and filling conditions of the 3D-printed part, and the thickness of the sample. Samples using areas in the form of isosceles triangles with constant height or bases with the same length, respectively, were used. The mathematical processing of the experimental results allowed the determination of empirical mathematical models of the power-function type. It allowed the detection of both the direction of actions and the intensity of the influence exerted by the input factors. It is concluded that the strongest influence on the printer’s ability to produce fine detail, from the point of view addressed in the paper, is exerted by the vertex angle, whose reduction leads to a decrease in printing accuracy.



2011 ◽  
Vol 70 ◽  
pp. 225-230 ◽  
Author(s):  
Agnieszka Derewonko ◽  
Andrzej Kiczko

The purpose of this paper is to describe the selection process of a rubber-like material model useful for simulation behaviour of an inflatable air cushion under multi-axial stress states. The air cushion is a part of a single segment of a pontoon bridge. The air cushion is constructed of a polyester fabric reinforced membrane such as Hypalon®. From a numerical point of view such a composite type poses a challenge since numerical ill-conditioning can occur due to stiffness differences between rubber and fabric. Due to the analysis of the large deformation dynamic response of the structure, the LS-Dyna code is used. Since LS-Dyna contains more than two-hundred constitutive models the inverse method is used to determine parameters characterizing the material on the base of results of the experimental test.



Neurosurgery ◽  
1985 ◽  
Vol 16 (3) ◽  
pp. 336-340 ◽  
Author(s):  
Michael Kosteljanetz

Abstract Two methods for the determination of resistance to the outflow of cerebrospinal fluid, the bolus injection technique and the constant rate steady state infusion technique, were compared. Thirty-two patients with a variety of intracranial diseases (usually communicating hydrocephalus) were studied. There was a high degree of correlation between the resistance values obtained with the two methods, but values based on the bolus injection technique were systematically and statistically significantly lower than those obtained with the constant rate infusion test. From a practical point of view. both methods were found to be applicable in a clinical setting.



2009 ◽  
Vol 1 (2) ◽  
Author(s):  
Qimi Jiang ◽  
Clément M. Gosselin

The evaluation and representation of the orientation workspace of robotic manipulators is a challenging task. This work focuses on the determination of the theoretical orientation workspace of the Gough–Stewart platform with given leg length ranges [ρimin,ρimax]. By use of the roll-pitch-yaw angles (ϕ,θ,ψ), the theoretical orientation workspace at a prescribed position P0 can be defined by up to 12 workspace surfaces. The defined orientation workspace is a closed region in the 3D orientation Cartesian space Oϕθψ. As all rotations R(x,ϕ), R(y,θ), and R(z,ψ) take place with respect to the fixed frame, any point of the defined orientation workspace provides a clear measure for the platform to, respectively, rotate in order around the (x,y,z) axes of the fixed frame. An algorithm is presented to compute the size (volume) of the theoretical orientation workspace and intersectional curves of the workspace surfaces. The defined theoretical orientation workspace can be applied to determine a singularity-free orientation workspace.



2010 ◽  
Vol 44 (21) ◽  
pp. 2487-2507 ◽  
Author(s):  
G. Vargas ◽  
F. Mujika

The aim of this work is to compare from an experimental point of view the determination of in-plane shear strength of unidirectional composite materials by means of two off-axis tests: three-point flexure and tensile. In the case of the off-axis three-point flexure test, the condition of small displacements and the condition of lift-off between the specimen and the fixture supports have been taken into account. Some considerations regarding stress and displacement fields are presented. The in-plane shear characterization has been performed on a carbon fiber reinforced unidirectional laminate with several fiber orientation angles: 10°, 20°, 30°, and 45°. Test conditions for both off-axis experimental methods, in order to ensure their applicability, are presented. Off-axis flexure test is considered more suitable than off-axis tensile test for the determination of in-plane shear strength.



2015 ◽  
Vol 24 (4) ◽  
pp. 298-321 ◽  
Author(s):  
Ernesto de la Rubia ◽  
Antonio Diaz-Estrella

Virtual reality has become a promising field in recent decades, and its potential now seems clearer than ever. With the development of handheld devices and wireless technologies, interest in virtual reality is also increasing. Therefore, there is an accompanying interest in inertial sensors, which can provide such advantages as small size and low cost. Such sensors can also operate wirelessly and be used in an increasing number of interactive applications. An example related to virtual reality is the ability to move naturally through virtual environments. This is the objective of the real-walking navigation technique, for which a number of advantages have previously been reported in terms of presence, object searching, and collision, among other concerns. In this article, we address the use of foot-mounted inertial sensors to achieve real-walking navigation in a wireless virtual reality system. First, an overall description of the problem is presented. Then, specific difficulties are identified, and a corresponding technique is proposed to overcome each: tracking of foot movements; determination of the user’s position; percentage estimation of the gait cycle, including oscillating movements of the head; stabilization of the velocity of the point of view; and synchronization of head and body yaw angles. Finally, a preliminary evaluation of the system is conducted in which data and comments from participants were collected.



Development ◽  
1958 ◽  
Vol 6 (3) ◽  
pp. 486-490
Author(s):  
S. Løvtrup ◽  
A. Pigon

According to the hypothesis advanced by Løvtrup (1958) the supply of oxygen is one of the factors responsible for the determination of bilateral symmetry in amphibian embryos. The protein coat covering the outside of the egg is known to have a very low permeability (Holtfreter, 1943), and it was suggested in the hypothesis that the formation of the grey crescent consists in a stretching of this coat by which the permeability is increased (cf. the work of Dalcq & Dollander (1948) and of Dollander & Melnotte (1952) on permeability of Nile blue), in this way the radial symmetry of the egg is changed to a bilateral symmetry from a metabolic point of view. As a consequence of the increase in permeability those oxidative, energy-supplying processes which are associated with gastrulation are enabled to proceed at a higher rate at one side of the egg.



Author(s):  
Л.А. МАРЧЕНКО ◽  
Т.Н. БОКОВИКОВА ◽  
Е.В. ЛИСОВАЯ ◽  
С.А. ИЛЬИНОВА ◽  
Е.П. ВИКТОРОВА

Исследована возможность применения яблочной кислоты (ЯК) в качестве гидратирующего агента для перевода негидратируемых форм фосфолипидов в гидратируемые. Выбор ЯК обусловлен ее стоимостью, которая в 1,5 раза меньше стоимости янтарной кислоты, широко применяемой в качестве гидратирующего агента, а также большей доступностью с точки зрения промышленного производства. Исследование процесса комплексообразования и определение состава комплексных соединений ЯК с ионами кальция и магния осуществляли методом потенциометрического титрования. Установлено, что внесение в раствор ЯК ионов кальция и магния приводит к снижению значений рН, что свидетельствует о наличии комплексообразования в указанных системах. Наиболее устойчивыми являются комплексы ионов кальция и магния с непротонированным лигандом при соотношении Ме2 : лиганд 1 : 1. В процессе комплексообразования ионы Ca2 и Mg2 вытесняют протоны только карбоксильных групп ЯК, которая с ионами кальция образует более устойчивые комплексы, чем с ионами магния. Показано, что устойчивость комплексов ЯК с ионами кальция и магния значительно выше, чем устойчивость комплексов фосфатидилсеринов и фосфатидных кислот с указанными ионами. Использование водных растворов ЯК в качестве гидратирующего агента позволит повысить эффективность процесса гидратации и увеличить выход фосфолипидов и, следовательно, готового продукта лецитина. The possibility of using malic acid (MA) as a hydrating agent for converting non-hydrated forms of phospholipids into hydrated ones has been investigated. The choice of MA is due to its cost, which is 1,5 times less than the cost of succinic acid, as well as greater availability from the point of view of industrial production. The study of the complexation process and determination of the composition of complex compounds of MA with calcium and magnesium ions was carried out by the method of potentiometric titration. It was found that the introduction of calcium and magnesium ions into the MA solution leads to a decrease in pH values, which indicates the presence of complexation in these systems. Complexes of calcium and magnesium ions with an unprotected ligand at a ratio of ME2 : ligand 1 : 1 are the most stable. In the process of complexing, Ca2 and Mg2 ions displace protons only of the carboxyl groups of MA, which forms more stable complexes with calcium ions than with magnesium ions. It is shown that the stability of MA complexes with calcium and magnesium ions is significantly higher than the stability of phosphatidylserine and phosphatidic acid complexes with these ions. Using water solutions of MA as a hydrating agent will increase the efficiency of the hydration process and increase the yield of phospholipids and, consequently, the finished product lecithin.



2015 ◽  
Vol 68 (8) ◽  
pp. 1202 ◽  
Author(s):  
Jeffrey R. Reimers

The reaction coordinate is a well known quantity used to define the motions critical to chemical reactions, but many other motions always accompany it. These other motions are typically ignored but this is not always possible. Sometimes it is not even clear as to which motions comprise the reaction coordinate: spectral measurements that one may assume are dominated by the reaction coordinate could instead be dominated by the accompanying modes. Examples of different scenarios are considered. The assignment of the visible absorption spectrum of chlorophyll-a was debated for 50 years, with profound consequences for the understanding of how light energy is transported and harvested in natural and artificial solar-energy devices. We recently introduced a new, comprehensive, assignment, the centrepiece of which was determination of the reaction coordinate for an unrecognized photochemical process. The notion that spectroscopy and reactivity are so closely connected comes directly from Hush’s adiabatic theory of electron-transfer reactions. Its basic ideas are reviewed, similarities to traditional chemical theories drawn, key analytical results described, and the importance of the accompanying modes stressed. Also highlighted are recent advances that allow this theory to be applied to general transformations including isomerization processes, hybridization, aromaticity, hydrogen bonding, and understanding why the properties of first-row molecules such as NH3 (bond angle 108°) are so different to those of PH3–BiH3 (bond angles 90–93°). Historically, the question of what is the reaction coordinate and what is just an accompanying motion has not commonly been at the forefront of attention. In our new approach in which all chemical processes are described using the same core theory, this question becomes thrust forward as always being the most important qualitative feature to determine.



Sign in / Sign up

Export Citation Format

Share Document