scholarly journals Amplification of Annual and Diurnal Cycles of Alpine Lightning

Author(s):  
Thorsten Simon ◽  
Georg J. Mayr ◽  
Deborah Morgenstern ◽  
Nikolaus Umlauf ◽  
Achim Zeileis

Abstract The response of lightning to a changing climate is not fully understood. Historic trends of proxies known for fostering convective environments suggest an increase of lightning over large parts of Europe. Since lightning results from the interaction of processes on many scales, as many of these processes as possible must be considered for a comprehensive answer. Recent achievements of decade-long seamless lightning measurements and hourly reanalyses of atmospheric conditions including cloud micro-physics combined with flexible regression techniques have made a reliable reconstruction of lightning down to its seasonally varying diurnal cycle feasible. To include a large variety of land-cover, topographical and atmospheric circulation conditions, the European Eastern Alps and their surroundings are our reconstruction region over a period of four decades. The most intense changes occurred over the high Alps where lightning activity doubled in the past decade compared to the 1980s. There, the lightning season reaches a higher maximum and starts one month earlier, likely due to the earlier snow melt. Diurnally, the peak is up to 50% stronger with more lightning strikes in the afternoon and evening hours. Signals along the southern and northern alpine rim are similar but weaker whereas the flatlands north of the Alps have no significant trend.

2019 ◽  
Vol 13 (1) ◽  
pp. 297-307 ◽  
Author(s):  
Dušan Materić ◽  
Elke Ludewig ◽  
Kangming Xu ◽  
Thomas Röckmann ◽  
Rupert Holzinger

Abstract. The exchange of organic matter (OM) between the atmosphere and snow is poorly understood due to the complex nature of OM and the convoluted processes of deposition, re-volatilisation, and chemical and biological processing. OM that is finally retained in glaciers potentially holds a valuable historical record of past atmospheric conditions; however, our understanding of the processes involved is insufficient to translate the measurements into an interpretation of the past atmosphere. This study examines the dynamic processes of post-precipitation OM change at the alpine snow surface with the goal of interpreting the processes involved in surface snow OM.


2019 ◽  
Vol 32 (20) ◽  
pp. 7067-7079 ◽  
Author(s):  
Liang Chen ◽  
Paul A. Dirmeyer

ABSTRACT Recent studies have shown the impacts of historical land-use land-cover changes (i.e., deforestation) on hot temperature extremes; contradictory temperature responses have been found between studies using observations and climate models. However, different characterizations of surface temperature are sometimes used in the assessments: land surface skin temperature Ts is more commonly used in observation-based studies while near-surface air temperature T2m is more often used in model-based studies. The inconsistent use of temperature variables is not inconsequential, and the relationship between deforestation and various temperature changes can be entangled, which complicates comparisons between observations and model simulations. In this study, the responses in the diurnal cycle of summertime Ts and T2m to deforestation are investigated using the Community Earth System Model. For the daily maximum, opposite responses are found in Ts and T2m. Due to decreased surface roughness after deforestation, the heat at the land surface cannot be efficiently dissipated into the air, leading to a warmer surface but cooler air. For the daily minimum, strong warming is found in T2m, which exceeds daytime cooling and leads to overall warming in daily mean temperatures. After comparing several climate models, we find that the models agree in daytime land surface (Ts) warming, but different turbulent transfer characteristics produce discrepancies in T2m. Our work highlights the need to investigate the diurnal cycles of temperature responses carefully in land-cover change studies. Furthermore, consistent consideration of temperature variables should be applied in future comparisons involving observations and climate models.


2018 ◽  
Author(s):  
Dušan Materić ◽  
Elke Ludewig ◽  
Kangming Xu ◽  
Thomas Röckmann ◽  
Rupert Holzinger

Abstract. The exchange of organic matter (OM) between the atmosphere and snow is poorly understood due to the complex nature of OM and the convoluted processes of deposition, re-volatilisation, chemical, and biological processing. OM that is finally retained in glaciers potentially holds a valuable historical record of past atmospheric conditions; however, our understanding of the processes involved is insufficient to translate the measurements into an interpretation of the past atmosphere. This study examines the dynamic processes of post-precipitation OM change at the alpine snow surface with the goal to interpret the processes involved in surface snow OM.


2005 ◽  
Vol 156 (6) ◽  
pp. 207-210 ◽  
Author(s):  
Claudio Defila

Numerous publications are devoted to plant phenological trends of all trees, shrubs and herbs. In this work we focus on trees of the forest. We take into account the spring season (leaf and needle development) as well as the autumn (colour turning and shedding of leaves) for larch, spruce and beech, and,owing to the lack of further autumn phases, the horse chestnut. The proportion of significant trends is variable, depending on the phenological phase. The strongest trend to early arrival in spring was measured for needles of the larch for the period between 1951 and 2000 with over 20 days. The leaves of the horse chestnut show the earliest trend to turn colour in autumn. Beech leaves have also changed colour somewhat earlier over the past 50 years. The trend for shedding leaves, on the other hand, is slightly later. Regional differences were examined for the growth of needles in the larch where the weakest trends towards early growth are found in Canton Jura and the strongest on the southern side of the Alps. The warming of the climate strongly influences phenological arrival times. Trees in the forest react to this to in a similar way to other plants that have been observed (other trees, shrubs and herbs).


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Kiros Tsegay Deribew

AbstractThe main grassland plain of Nech Sar National Park (NSNP) is a federally managed protected area in Ethiopia designated to protect endemic and endangered species. However, like other national parks in Ethiopia, the park has experienced significant land cover change over the past few decades. Indeed, the livelihoods of local populations in such developing countries are entirely dependent upon natural resources and, as a result, both direct and indirect anthropogenic pressures have been placed on natural parks. While previous research has looked at land cover change in the region, these studies have not been spatially explicit and, as a result, knowledge gaps in identifying systematic transitions continue to exist. This study seeks to quantify the spatial extent and land cover change trends in NSNP, identify the strong signal transitions, and identify and quantify the location of determinants of change. To this end, the author classifies panchromatic aerial photographs in 1986, multispectral SPOT imagery in 2005, and Sentinel imagery in 2019. The spatial extent and trends of land cover change analysis between these time periods were conducted. The strong signal transitions were systematically identified and quantified. Then, the basic driving forces of the change were identified. The locations of these transitions were also identified and quantified using the spatially explicit statistical model. The analysis revealed that over the past three decades (1986–2019), nearly 52% of the study area experienced clear landscape change, out of which the net change and swap change attributed to 39% and 13%, respectively. The conversion of woody vegetation to grassland (~ 5%), subsequently grassland-to-open-overgrazed land (28.26%), and restoration of woody vegetation (0.76%) and grassland (0.72%) from riverine forest and open-overgrazed land, respectively, were found to be the fully systematic transitions whereas the rest transitions were recorded either partly systematic or random transitions. The location of these most systematic land cover transitions identified through the spatially explicit statistical modeling showed drivers due to biophysical conditions, accessibility, and urban/market expansions, coupled with successive government policies for biodiversity management, geo-politics, demographic, and socioeconomic factors. These findings provide important insights into biodiversity loss, land degradation, and ecosystem disruption. Therefore, the model for predicted probability generally suggests a 0.75 km and 0.72 km buffers which are likely to protect forest and grassland from conversion to grassland and open-overgrazed land, respectively.


2018 ◽  
Vol 18 (13) ◽  
pp. 9457-9473 ◽  
Author(s):  
Vincent Noel ◽  
Hélène Chepfer ◽  
Marjolaine Chiriaco ◽  
John Yorks

Abstract. We document, for the first time, how detailed vertical profiles of cloud fraction (CF) change diurnally between 51∘ S and 51∘ N, by taking advantage of 15 months of measurements from the Cloud-Aerosol Transport System (CATS) lidar on the non-sun-synchronous International Space Station (ISS). Over the tropical ocean in summer, we find few high clouds during daytime. At night they become frequent over a large altitude range (11–16 km between 22:00 and 04:00 LT). Over the summer tropical continents, but not over ocean, CATS observations reveal mid-level clouds (4–8 km above sea level or a.s.l.) persisting all day long, with a weak diurnal cycle (minimum at noon). Over the Southern Ocean, diurnal cycles appear for the omnipresent low-level clouds (minimum between noon and 15:00) and high-altitude clouds (minimum between 08:00 and 14:00). Both cycles are time shifted, with high-altitude clouds following the changes in low-altitude clouds by several hours. Over all continents at all latitudes during summer, the low-level clouds develop upwards and reach a maximum occurrence at about 2.5 km a.s.l. in the early afternoon (around 14:00). Our work also shows that (1) the diurnal cycles of vertical profiles derived from CATS are consistent with those from ground-based active sensors on a local scale, (2) the cloud profiles derived from CATS measurements at local times of 01:30 and 13:30 are consistent with those observed from CALIPSO at similar times, and (3) the diurnal cycles of low and high cloud amounts (CAs) derived from CATS are in general in phase with those derived from geostationary imagery but less pronounced. Finally, the diurnal variability of cloud profiles revealed by CATS strongly suggests that CALIPSO measurements at 01:30 and 13:30 document the daily extremes of the cloud fraction profiles over ocean and are more representative of daily averages over land, except at altitudes above 10 km where they capture part of the diurnal variability. These findings are applicable to other instruments with local overpass times similar to CALIPSO's, such as all the other A-Train instruments and the future EarthCARE mission.


2021 ◽  
Vol 13 (13) ◽  
pp. 2564
Author(s):  
Mauro Martini ◽  
Vittorio Mazzia ◽  
Aleem Khaliq ◽  
Marcello Chiaberge

The increasing availability of large-scale remote sensing labeled data has prompted researchers to develop increasingly precise and accurate data-driven models for land cover and crop classification (LC&CC). Moreover, with the introduction of self-attention and introspection mechanisms, deep learning approaches have shown promising results in processing long temporal sequences in the multi-spectral domain with a contained computational request. Nevertheless, most practical applications cannot rely on labeled data, and in the field, surveys are a time-consuming solution that pose strict limitations to the number of collected samples. Moreover, atmospheric conditions and specific geographical region characteristics constitute a relevant domain gap that does not allow direct applicability of a trained model on the available dataset to the area of interest. In this paper, we investigate adversarial training of deep neural networks to bridge the domain discrepancy between distinct geographical zones. In particular, we perform a thorough analysis of domain adaptation applied to challenging multi-spectral, multi-temporal data, accurately highlighting the advantages of adapting state-of-the-art self-attention-based models for LC&CC to different target zones where labeled data are not available. Extensive experimentation demonstrated significant performance and generalization gain in applying domain-adversarial training to source and target regions with marked dissimilarities between the distribution of extracted features.


2021 ◽  
Author(s):  
Rens Hofman ◽  
Joern Kummerow ◽  
Simone Cesca ◽  
Joachim Wassermann ◽  
Thomas Plenefisch ◽  
...  

<p>The AlpArray seismological experiment is an international and interdisciplinary project to advance our understanding of geophysical processes in the greater Alpine region. The heart of the project consists of a large seismological array that covers the mountain range and its surrounding areas. To understand how the Alps and their neighbouring mountain belts evolved through time, we can only study its current structure and processes. The Eastern Alps are of prime interest since they currently demonstrate the highest crustal deformation rates. A key question is how these surface processes are linked to deeper structures. The Swath-D network is an array of temporary seismological stations complementary to the AlpArray network located in the Eastern Alps. This creates a unique opportunity to investigate high resolution seismicity on a local scale.</p><p>In this study, a combination of waveform-based detection methods was used to find small earthquakes in the large data volume of the Swath-D network. Methods were developed to locate the seismic events using semi-automatic picks, and estimate event magnitudes. We present an overview of the methods and workflow, as well as a preliminary overview of the seismicity in the Eastern Alps.</p>


2021 ◽  
Author(s):  
Michael Haugeneder ◽  
Tobias Jonas ◽  
Dylan Reynolds ◽  
Michael Lehning ◽  
Rebecca Mott

<p>Snowmelt runoff predictions in alpine catchments are challenging because of the high spatial variability of t<span>he snow cover driven by </span>various snow accumulation and ablation processes. In spring, the coexistence of bare and snow-covered ground engages a number of processes such as the enhanced lateral advection of heat over partial snow cover, the development of internal boundary layers, and atmospheric decoupling effects due to increasing stability at the snow cover. The interdependency of atmospheric conditions, topographic settings and snow coverage remains a challenge to accurately account for these processes in snow melt models.<br>In this experimental study, we used an Infrared Camera (VarioCam) pointing at thin synthetic projection screens with negligible heat capacity. Using the surface temperature of the screen as a proxy for the air temperature, we obtained a two-dimensional instantaneous measurement. Screens were installed across the transition between snow-free and snow-covered areas. With IR-measurements taken at 10Hz, we capture<span> the dynamics of turbulent temperature fluctuations</span><span> </span>over the patchy snow cover at high spatial and temporal resolution. From this data we were able to obtain high-frequency, two-dimensional windfield estimations adjacent to the surface.</p><p>Preliminary results show the formation of a stable internal boundary layer (SIBL), which was temporally highly variable. Our data suggest that the SIBL height is very shallow and strongly sensitive to the mean near-surface wind speed. Only strong gusts were capable of penetrating through this SIBL leading to an enhanced energy input to the snow surface.</p><p>With these type of results from our experiments and further measurements this spring we aim to better understand small scale energy transfer processes over patch snow cover and it’s dependency on the atmospheric conditions, enabling to improve parameterizations of these processes in coarser-resolution snow melt models.</p>


Sign in / Sign up

Export Citation Format

Share Document