ventrolateral preoptic nucleus
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 15)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
pp. 1195-1198
Author(s):  
Pablo R. Castillo

Sleep disorders often respond to both pharmacologic agents and nonpharmacologic therapies. This chapter reviews the pharmacology of and indications for specific sleep agents. Most of the agents approved by the US Food and Drug Administration for insomnia, with the exception of antidepressants and ramelteon, modulate the function of the γ‎-aminobutyric acid (GABA)-A receptor complex. The ventrolateral preoptic nucleus (VLPO) has a critical role in sleep initiation and maintenance. GABA is the primary inhibitory neurotransmitter of the VLPO. Medications used for sleep promotion include benzodiazepines, chronobiotics, sedating antidepressants, histamine blockers, and γ‎-hydroxybutyric acid.


2021 ◽  
Author(s):  
Sophie Masneuf ◽  
Lukas L. Imbach ◽  
Fabian Buechele ◽  
Giovanni Colacicco ◽  
Marco Penner ◽  
...  

Deep brain stimulation (DBS) has been scarcely investigated in the field of sleep research. We hypothesize that DBS onto hypothalamic sleep- and wake-promoting centers will produce significant neuromodulatory effects, and potentially become a therapeutic strategy for patients suffering severe, drug-refractory sleep-wake disturbances. We aimed to investigate whether continuous electrical high-frequency DBS, such as that often implemented in clinical practice, in the ventrolateral preoptic nucleus (VLPO) or the perifornical area of the posterior lateral hypothalamus (PeFLH), significantly modulates sleep-wake characteristics and behavior. We implanted healthy rats with electroencephalographic/electromyographic electrodes and recorded vigilance states in parallel to bilateral bipolar stimulation of VLPO and PeFLH at 125 Hz at 90 microA over 24 h to test the modulating effects of DBS on sleep-wake proportions, stability and spectral power in relation to baseline. We unexpectedly found that VLPO DBS at 125 Hz deepens slow-wave sleep as measured by increased delta power, while sleep proportions and fragmentation remain unaffected. Thus, the intensity, but not the amount of sleep or its stability, is modulated. Similarly, the proportion and stability of vigilance states remained altogether unaltered upon PeFLH DBS but, in contrast to VLPO, 125 Hz stimulation unexpectedly weakened SWS, evidenced by reduced delta power. This study provides novel insights into non-acute functional outputs of major sleep-wake centers in the rat brain in response to electrical high-frequency stimulation, a paradigm frequently used in human DBS. In the conditions assayed, while exerting no major effects on sleep-wake architecture, hypothalamic high-frequency stimulation arises as a provocative sleep intensity-modulating approach.


2021 ◽  
Vol 12 (1) ◽  
pp. 611-625
Author(s):  
Sophie Masneuf ◽  
Lukas L. Imbach ◽  
Fabian Büchele ◽  
Giovanni Colacicco ◽  
Marco Penner ◽  
...  

Abstract Deep brain stimulation (DBS) has been scarcely investigated in the field of sleep research. We hypothesize that DBS onto hypothalamic sleep- and wake-promoting centers will produce significant neuromodulatory effects and potentially become a therapeutic strategy for patients suffering severe, drug-refractory sleep–wake disturbances. We aimed to investigate whether continuous electrical high-frequency DBS, such as that often implemented in clinical practice, in the ventrolateral preoptic nucleus (VLPO) or the perifornical area of the posterior lateral hypothalamus (PeFLH), significantly modulates sleep–wake characteristics and behavior. We implanted healthy rats with electroencephalographic/electromyographic electrodes and recorded vigilance states in parallel to bilateral bipolar stimulation of VLPO and PeFLH at 125 Hz and 90 µA over 24 h to test the modulating effects of DBS on sleep–wake proportions, stability and spectral power in relation to the baseline. We unexpectedly found that VLPO DBS at 125 Hz deepens slow-wave sleep (SWS) as measured by increased delta power, while sleep proportions and fragmentation remain unaffected. Thus, the intensity, but not the amount of sleep or its stability, is modulated. Similarly, the proportion and stability of vigilance states remained altogether unaltered upon PeFLH DBS but, in contrast to VLPO, 125 Hz stimulation unexpectedly weakened SWS, as evidenced by reduced delta power. This study provides novel insights into non-acute functional outputs of major sleep–wake centers in the rat brain in response to electrical high-frequency stimulation, a paradigm frequently used in human DBS. In the conditions assayed, while exerting no major effects on the sleep–wake architecture, hypothalamic high-frequency stimulation arises as a provocative sleep intensity-modulating approach.


2020 ◽  
Vol 14 ◽  
Author(s):  
Juan Cheng ◽  
Fang Wu ◽  
Mingrui Zhang ◽  
Ding Ding ◽  
Sumei Fan ◽  
...  

The ventrolateral preoptic nucleus (VLPO) in the anterior hypothalamus and the tuberomammillary nucleus (TMN) in the posterior hypothalamus are critical regions which involve the regulation of sleep-wakefulness flip-flop in the central nervous system. Most of the VLPO neurons are sleep-promoting neurons, which co-express γ-aminobutyric acid (GABA) and galanin, while TMN neurons express histamine (HA), a key wake-promoting neurotransmitter. Previous studies have shown that the two regions are innervated between each other, but how to regulate the sleep-wake cycle are not yet clear. Here, bicuculline (Bic), a GABAA-receptor antagonist, L-glutamate (L-Glu), an excitatory neurotransmitter, and triprolidine (Trip), a HA1 receptor (HRH1) inhibitor, were bilaterally microinjected into TMN or VLPO after surgically implanting the electroencephalogram (EEG) and electromyography (EMG) electrode recording system. Microinjecting L-Glu into VLPO during the night significantly increased the NREM sleep time, and this phenomenon was weakened after selectively blocking GABAA receptors with Bic microinjected into TMN. Those results reveal that VLPO neurons activated, which may inhibit TMN neurons inducing sleep via GABAA receptors. On the contrary, exciting TMN neurons by L-Glu during the day, the wakefulness time was significantly increased. These phenomena were reversed by blocking HRH1 with Trip microinjected into VLPO. Those results reveal that TMN neuron activating may manipulate VLPO neurons via HRH1, and induce wakefulness. In conclusion, VLPO GABAergic neurons and TMN histaminergic neurons may interact with each other in regulating the sleep-wake cycle.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaofeng Guo ◽  
Xiaoling Gao ◽  
Brendan T. Keenan ◽  
Jingxu Zhu ◽  
Dimitra Sarantopoulou ◽  
...  

Abstract Background Previous studies show that galanin neurons in ventrolateral preoptic nucleus (VLPO-Gal) are essential for sleep regulation. Here, we explored the transcriptional regulation of the VLPO-Gal neurons in sleep by comparing their transcriptional responses between sleeping mice and those kept awake, sacrificed at the same diurnal time. Results RNA-sequencing (RNA-seq) analysis was performed on eGFP(+) galanin neurons isolated using laser captured microdissection (LCM) from VLPO. Expression of Gal was assessed in our LCM eGFP(+) neurons via real time qPCR and showed marked enrichment when compared to LCM eGFP(−) cells and to bulk VLPO samples. Gene set enrichment analysis utilizing data from a recent single-cell RNA-seq study of the preoptic area demonstrated that our VLPO-Gal samples were highly enriched with galanin-expressing inhibitory neurons, but not galanin-expressing excitatory neurons. A total of 263 genes were differentially expressed between sleep and wake in VLPO-Gal neurons. When comparing differentially expressed genes in VLPO-Gal neurons to differentially expressed genes in a wake-active neuronal region (the medial prefrontal cortex), evidence indicates that both systemic and cell-specific mechanisms contribute to the transcriptional regulation in VLPO-Gal neurons. In both wake-active and sleep-active neurons, ER stress pathways are activated by wake and cold-inducible RNA-binding proteins are activated by sleep. In contrast, expression of DNA repair genes is increased in VLPO-Gal during wakefulness, but increased in wake-active cells during sleep. Conclusion Our study identified transcriptomic responses of the galanin neurons in the ventrolateral preoptic nucleus during sleep and sleep deprivation. Data indicate that VLPO contains mainly sleep-active inhibitory galaninergic neurons. The VLPO galanin neurons show responses to sleep and wake similar to wake-active regions, indicating these responses, such as ER stress and cold-inducible RNA-binding proteins, are systemic affecting all neuronal populations. Region-specific differences in sleep/wake responses were also identified, in particular DNA repair. Our study expands knowledge about the transcriptional response of a distinct group of neurons essential for sleep.


2020 ◽  
Author(s):  
Xiaofeng Guo ◽  
Xiaoling Gao ◽  
Brendan T. Keenan ◽  
Jingxu Zhu ◽  
Dimitra Sarantopoulou ◽  
...  

Abstract Background: Previous studies show that galanin neurons in ventrolateral preoptic nucleus (VLPO-Gal) are essential for sleep regulation. Here, we explored the transcriptional regulation of the VLPO-Gal neurons in sleep by comparing their transcriptional responses between sleeping mice and those kept awake, sacrificed at the same diurnal time. Results: RNA-sequencing (RNA-seq) analysis was performed on eGFP(+) galanin neurons isolated using laser captured microdissection (LCM) from VLPO. Expression of Gal was assessed in our LCM eGFP(+) neurons via real time qPCR and showed marked enrichment when compared to LCM eGFP(-) cells and to bulk VLPO samples. Gene set enrichment analysis utilizing data from a recent single-cell RNA-seq study of the preoptic area demonstrated that our VLPO-Gal samples were highly enriched with galanin-expressing inhibitory neurons, but not galanin-expressing excitatory neurons. A total of 263 genes were differentially expressed between sleep and wake in VLPO-Gal neurons. When comparing differentially expressed genes in VLPO-Gal neurons to differentially expressed genes in a wake-active neuronal region (the medial prefrontal cortex), evidence indicates that both systemic and cell-specific mechanisms contribute to the transcriptional regulation in VLPO-Gal neurons. In both wake-active and sleep-active neurons, ER stress pathways are activated by wake and cold-inducible RNA-binding proteins are activated by sleep. In contrast, expression of DNA repair genes is increased in VLPO-Gal during wakefulness, but increased in wake-active cells during sleep. Conclusion: Our study identified transcriptomic responses of the galanin neurons in the ventrolateral preoptic nucleus during sleep and sleep deprivation. Data indicate that VLPO contains mainly sleep-active inhibitory galaninergic neurons. The VLPO galanin neurons show responses to sleep and wake similar to wake-active regions, indicating these responses, such as ER stress and cold-inducible RNA-binding proteins, are systemic affecting all neuronal populations. Region-specific differences in sleep/wake responses were also identified, in particular DNA repair. Our study expands knowledge about the transcriptional response of a distinct group of neurons essential for sleep.


2020 ◽  
Author(s):  
Xiaofeng Guo ◽  
Xiaoling Gao ◽  
Brendan T. Keenan ◽  
Jingxu Zhu ◽  
Dimitra Sarantopoulou ◽  
...  

Abstract Background: Previous studies show that galanin neurons in ventrolateral preoptic nucleus (VLPO-Gal) are essential for sleep regulation. Here, we explored the transcriptional regulation of the VLPO-Gal neurons in sleep by comparing their transcriptional responses between sleeping mice and those kept awake, sacrificed at the same diurnal time. Results: RNA-sequencing (RNA-seq) analysis was performed on eGFP(+) galanin neurons isolated using laser captured microdissection (LCM) from VLPO. Expression of Gal was assessed in our LCM eGFP(+) neurons via real time qPCR and showed marked enrichment when compared to LCM eGFP(-) cells and to bulk VLPO samples. Gene set enrichment analysis utilizing data from a recent single-cell RNA-seq study of the preoptic area demonstrated that our VLPO-Gal samples were highly enriched with galanin-expressing inhibitory neurons, but not galanin-expressing excitatory neurons. A total of 263 genes were differentially expressed between sleep and wake in VLPO-Gal neurons. When comparing differentially expressed genes in VLPO-Gal neurons to differentially expressed genes in a wake-active neuronal region (the medial prefrontal cortex), evidence indicates that both systemic and cell-specific mechanisms contribute to the transcriptional regulation in VLPO-Gal neurons. In both wake-active and sleep-active neurons, ER stress pathways are activated by wake and cold-inducible RNA-binding proteins are activated by sleep. In contrast, expression of DNA repair genes is increased in VLPO-Gal during wakefulness, but increased in wake-active cells during sleep. Conclusion: Our study identified transcriptomic responses of the galanin neurons in the ventrolateral preoptic nucleus during sleep and sleep deprivation. Data indicate that VLPO contains mainly sleep-active inhibitory galaninergic neurons. The VLPO galanin neurons show responses to sleep and wake similar to wake-active regions, indicating these responses, such as ER stress and cold-inducible RNA-binding proteins, are systemic affecting all neuronal populations. Region-specific differences in sleep/wake responses were also identified, in particular DNA repair. Our study expands knowledge about the transcriptional response of a distinct group of neurons essential for sleep.


2020 ◽  
Vol 5 (3 And 4) ◽  
pp. 99-102
Author(s):  
Fariborz Ghaffarpasand ◽  
◽  
Mousa Taghipour ◽  

Sexual function and orientation is a complex platform of human personality which is being modulated by several brain circuities which is less understood currently. Recently, several studies have demonstrated interesting results regarding the role of several brain locations in sexual behaviors and orientation. Sexual arousal in homosexual men is associated with activation of the left angular gyrus, left caudate nucleus, Ventrolateral Preoptic (VLPO) Nucleus of Hypothalamus and right pallidum; while it is associated with bilateral lingual gyrus, right hippocampus, and right parahippocampal gyrus in heterosexual men. We postulate that sexual-orientation behaviors are being mediated by several circuits in the brain in the center of which the VLPO is playing an indistinguishable role. We hypothesize that the different aspects of the sexual dysfunction could be associated with innate or acquired lesions of VLPO. Accordingly, the electrical stimulation of the nucleus in those with sexual dysfunction would be a treatment option. Thus the VLPO could be considered a target for Deep Brain Stimulation (DBS) in individuals with impaired sexual function.


Sign in / Sign up

Export Citation Format

Share Document