filter pack
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 9)

H-INDEX

18
(FIVE YEARS 2)

Jurnal Ecolab ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 1-11
Author(s):  
Retno Puji Lestari ◽  
◽  
Dyah Aries Tanti ◽  
Miya Riski Utari ◽  
Yuni Kartika ◽  
...  

Peningkatan emisi gas buang dari kegiatan industri dan transportasi berkontribusi pada terjadinya pencemaran udara dan menyebabkan deposisi asam. Pemantauan deposisi kering di tiga lokasi berbeda (Serpong, Jakarta, dan Bandung) dilakukan selama tahun 2019. Penelitian ini bertujuan untuk mengetahui konsentrasi polutan parameter deposisi kering, serta melihat perbandingan konsentrasi saat musim hujan dan kemarau. Pengukuran deposisi kering dengan metode filter pack meliputi dua parameter yaitu partikulat Na+, K+, Ca2+, Mg2+, NH4+, Cl-, NO3-, dan SO42- dalam aerosol serta gas-gas SO2, HNO3, NH3, dan HCl. Udara dilewatkan pada four stage filter pack yang memiliki spesifikasi untuk tiap komponen kimia di setiap rangkaian filter, selama dua minggu secara kontinyu menggunakan pompa dengan laju alir 1 L/menit. Filter hasil sampling dipreparasi dan dianalisis menggunakan Ion Chromatography DIONEX ICS5000 menggunakan eluen campuran NaHCO3 2,7 mM dan Na2CO3 0,3 mM untuk anion dan eluen MSA 20 mM untuk kation dengan laju alir pengukuran 1 L/menit. Hasil pengujian memperlihatkan bahwa gas NH3 dan partikulat SO42- di setiap lokasi merupakan polutan dominan dalam deposisi kering. Konsentrasi NH3 tertinggi di Jakarta terjadi pada bulan Desember (4,4 ppb), di Bandung pada bulan November (17 ppb), sementara di Serpong pada bulan Juli (13 ppb). Konsentrasi SO42- paling tinggi di Jakarta terjadi pada bulan Juli (10,3 mg/m3), di Bandung pada bulan Februari (11,7 mg/m3), dan di Serpong pada bulan September (8,6 mg/m3). Persentase senyawa NH3 di Jakarta, Bandung, dan Serpong masing-masing sebesar 41%, 70%, dan 64%, sementara SO42- masing-masing sebesar 42%, 49%, dan 58%. Tidak terlihat adanya perbedaan nyata antara konsentrasi pencemar pada musim hujan dan kemarau di Bandung, Jakarta, dan Serpong untuk beberapa parameter, kecuali di Jakarta untuk Na+ (p < 0,05), di Serpong untuk SO2, HCl,dan K+ berbeda nyata (p < 0,05), serta parameter HNO3 dan NO3- berbeda nyata (p < 0,001).


2021 ◽  
Vol 21 (2) ◽  
pp. 875-914
Author(s):  
Y. Sim Tang ◽  
Chris R. Flechard ◽  
Ulrich Dämmgen ◽  
Sonja Vidic ◽  
Vesna Djuricic ◽  
...  

Abstract. A comprehensive European dataset on monthly atmospheric NH3, acid gases (HNO3, SO2, HCl), and aerosols (NH4+, NO3-, SO42-, Cl−, Na+, Ca2+, Mg2+) is presented and analysed. Speciated measurements were made with a low-volume denuder and filter pack method (DEnuder for Long-Term Atmospheric sampling, DELTA®) as part of the EU NitroEurope (NEU) integrated project. Altogether, there were 64 sites in 20 countries (2006–2010), coordinated between seven European laboratories. Bulk wet-deposition measurements were carried out at 16 co-located sites (2008–2010). Inter-comparisons of chemical analysis and DELTA® measurements allowed an assessment of comparability between laboratories. The form and concentrations of the different gas and aerosol components measured varied between individual sites and grouped sites according to country, European regions, and four main ecosystem types (crops, grassland, forests, and semi-natural). The smallest concentrations (with the exception of SO42- and Na+) were in northern Europe (Scandinavia), with broad elevations of all components across other regions. SO2 concentrations were highest in central and eastern Europe, with larger SO2 emissions, but particulate SO42- concentrations were more homogeneous between regions. Gas-phase NH3 was the most abundant single measured component at the majority of sites, with the largest variability in concentrations across the network. The largest concentrations of NH3, NH4+, and NO3- were at cropland sites in intensively managed agricultural areas (e.g. Borgo Cioffi in Italy), and the smallest were at remote semi-natural and forest sites (e.g. Lompolojänkkä, Finland), highlighting the potential for NH3 to drive the formation of both NH4+ and NO3- aerosol. In the aerosol phase, NH4+ was highly correlated with both NO3- and SO42-, with a near-1:1 relationship between the equivalent concentrations of NH4+ and sum (NO3-+ SO42-), of which around 60 % was as NH4NO3. Distinct seasonality was also observed in the data, influenced by changes in emissions, chemical interactions, and the influence of meteorology on partitioning between the main inorganic gases and aerosol species. Springtime maxima in NH3 were attributed to the main period of manure spreading, while the peak in summer and trough in winter were linked to the influence of temperature and rainfall on emissions, deposition, and gas–aerosol-phase equilibrium. Seasonality in SO2 was mainly driven by emissions (combustion), with concentrations peaking in winter, except in southern Europe, where the peak occurred in summer. Particulate SO42- showed large peaks in concentrations in summer in southern and eastern Europe, contrasting with much smaller peaks occurring in early spring in other regions. The peaks in particulate SO42- coincided with peaks in NH3 concentrations, attributed to the formation of the stable (NH4)2SO4. HNO3 concentrations were more complex, related to traffic and industrial emissions, photochemistry, and HNO3:NH4NO3 partitioning. While HNO3 concentrations were seen to peak in the summer in eastern and southern Europe (increased photochemistry), the absence of a spring peak in HNO3 in all regions may be explained by the depletion of HNO3 through reaction with surplus NH3 to form the semi-volatile aerosol NH4NO3. Cooler, wetter conditions in early spring favour the formation and persistence of NH4NO3 in the aerosol phase, consistent with the higher springtime concentrations of NH4+ and NO3-. The seasonal profile of NO3- was mirrored by NH4+, illustrating the influence of gas–aerosol partitioning of NH4NO3 in the seasonality of these components. Gas-phase NH3 and aerosol NH4NO3 were the dominant species in the total inorganic gas and aerosol species measured in the NEU network. With the current and projected trends in SO2, NOx, and NH3 emissions, concentrations of NH3 and NH4NO3 can be expected to continue to dominate the inorganic pollution load over the next decades, especially NH3, which is linked to substantial exceedances of ecological thresholds across Europe. The shift from (NH4)2SO4 to an atmosphere more abundant in NH4NO3 is expected to maintain a larger fraction of reactive N in the gas phase by partitioning to NH3 and HNO3 in warm weather, while NH4NO3 continues to contribute to exceedances of air quality limits for PM2.5.


2020 ◽  
Author(s):  
Y. Sim Tang ◽  
Chris R. Flechard ◽  
Ulrich Dämmgen ◽  
Sonja Vidic ◽  
Vesna Djuricic ◽  
...  

Abstract. A comprehensive European dataset on monthly atmospheric NH3, acid gases (HNO3, SO2, HCl) and aerosols (NH4+, NO3-, SO42-, Cl-, Na+, Ca2+, Mg2+) is presented and analyzed. Speciated measurements were made with a low-volume denuder and filter pack method (DELTA®) as part of the EU NitroEurope (NEU) integrated project. Altogether, there were 64 sites in 20 countries (2006–2010), coordinated between 7 European laboratories. Bulk wet deposition measurements were carried out at 16 co-located sites (2008–2010). Inter-comparisons of chemical analysis and DELTA® measurements allowed an assessment of comparability between laboratories. The form and concentrations of the different gas and aerosol components measured varied between individual sites and grouped sites according to country, European regions and 4 main ecosystem types (crops, grassland, forests and semi-natural). Smallest concentrations (with the exception of SO42- and Na+) were in Northern Europe (Scandinavia), with broad elevations of all components across other regions. SO2 concentrations were highest in Central and Eastern Europe with larger SO2 emissions, but particulate SO42- concentrations were more homogeneous between regions. Gas-phase NH3 was the most abundant single measured component at the majority of sites, with the largest variability in concentrations across the network. The largest concentrations of NH3, NH4+ and NO3- were at cropland sites in intensively managed agricultural areas (e.g. Borgo Cioffi in Italy), and smallest at remote semi-natural and forest sites (e.g. Lompolojänkkä, Finland), highlighting the potential for NH3 to drive the formation of both NH4+ and NO3- aerosol. In the aerosol phase, NH4+ was highly correlated with both NO3- and SO42-, with a near 1 : 1 relationship between the equivalent concentrations of NH4+ and sum (NO3- + SO42-), of which around 60 % was as NH4NO3. Distinct seasonality were also observed in the data, influenced by changes in emissions, chemical interactions and the influence of meteorology on partitioning between the main inorganic gases and aerosol species. Springtime maxima in NH3 were attributed to the main period of manure spreading, while the peak in summer and trough in winter were linked to the influence of temperature and rainfall on emissions, deposition and gas-aerosol phase equilibrium. Seasonality in SO2 were mainly driven by emissions (combustion), with concentrations peaking in winter, except in Southern Europe where the peak occurred in summer. Particulate SO42- showed large peaks in concentrations in summer in Southern and Eastern Europe, contrasting with much smaller peaks occurring in early spring in other regions. The peaks in particulate SO42- coincided with peaks in NH3 concentrations, attributed to the formation of the stable (NH4)2SO4. HNO3 concentrations were more complex, related to traffic and industrial emissions, photochemistry and HNO3 : NH4NO3 partitioning. While HNO3 concentrations were seen to peak in the summer in Eastern and Southern Europe (increased photochemistry), the absence of a spring peak in HNO3 in all regions may be explained by the depletion of HNO3 through reaction with surplus NH3 to form the semi-volatile aerosol NH4NO3. Cooler, wetter conditions in early spring favour the formation and persistence of NH4NO3 in the aerosol phase, consistent with the higher springtime concentrations of NH4+ and NO3-. The seasonal profile of NO3- was mirrored by NH4+, illustrating the influence of gas : aerosol partitioning of NH4NO3 in the seasonality of these components. Gas-phase NH3 and aerosol NH4NO3 were the dominant species in the total inorganic gas and aerosol species measured in the NEU network. With the current and projected trends in SO2, NOx and NH3 emissions, concentrations of NH3 and NH4NO3 can be expected to continue to dominate the inorganic pollution load over the next decades, especially NH3 which is linked to substantial exceedances of ecological thresholds across Europe. The shift from (NH4)2SO4 to an atmosphere more abundant in NH4NO3 is expected to maintain a larger fraction of reactive N in the gas phase by partitioning to NH3 and HNO3 in warm weather, while NH4NO3 continues to contribute to exceedances of air quality limits for PM2.5.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 222 ◽  
Author(s):  
Kazuyo Yamaji ◽  
Satoru Chatani ◽  
Syuichi Itahashi ◽  
Masahiko Saito ◽  
Masayuki Takigawa ◽  
...  

A model inter-comparison of secondary pollutant simulations over urban areas in Japan, the first phase of Japan’s study for reference air quality modeling (J-STREAM Phase I), was conducted using 32 model settings. Simulated hourly concentrations of nitric oxide (NO) and nitrogen dioxide (NO2), which are primary pollutant precursors of particulate matter with a diameter of 2.5 µm or less (PM2.5), showed good agreement with the observed concentrations, but most of the simulated hourly sulfur oxide (SO2) concentrations were much higher than the observations. Simulated concentrations of PM2.5 and its components were compared to daily observed concentrations by using the filter pack method at selected ambient air pollution monitoring stations (AAPMSs) for each season. In general, most models showed good agreement with the observed total PM2.5 mass concentration levels in each season and provided goal or criteria levels of model ensemble statistics in warmer seasons. The good performances of these models were associated with the simulated reproducibility of some dominant components, sulfates (SO42−) and ammonium (NH4+). The other simulated PM2.5 components, i.e., nitrates (NO3−), elemental carbon (EC), and organic carbon (OC), often show clear deviations from the observations. The considerable underestimations (approximately 30 µg/m3 for total PM2.5) of all participant models found on heavily polluted days with approximately 40–50 µg/m3 for total PM2.5 indicated some problems in the simulated local meteorology such as the atmospheric stability. This model inter-comparison suggests that these deviations may be owing to a need for further improvements both in the emission inventories and additional formation pathways in chemical transport models, and meteorological conditions also require improvement to simulate elevated atmospheric pollutants. Additional accumulated observations are likely needed to further evaluate the simulated concentrations and improve the model performance.


2020 ◽  
Vol 2 (1) ◽  
pp. 96-110
Author(s):  
Spencer ◽  
Osborne ◽  
Van Heyst

Due to the complex manner in which secondary inorganic aerosols (SIAs) form, a need exists to develop a methodology to measure PM2.5 emissions from agricultural operations to better understand the contribution of SIAs to the PM2.5 fraction. When sampling particulate matter (PM), annular denuder systems (ADS) are a United States Environmental Protection Agency (US EPA) approved system used to measure both gaseous and particulate components of aerosols. While collecting basic gases, such as ammonia, using nine denuders was feasibly demonstrated in poultry housing units but the ability of additional denuders to accurately collect the SIAs on the filters is yet to be demonstrated. An experiment was designed to assess particle deposition behaviors throughout three different ADS configurations. It was determined that the nine denuder configuration resulted in particles being impacted and retained, mainly in the U-bend junctions, prior to reaching the filters with only 87.2% of PM2.5 reaching the filter pack. The US EPA-prescribed ADS configuration had 99.4% of PM2.5 reaching the filters, indicating that there is an impact due to the U-Bend addition to the system. It was further demonstrated that having additional denuders in series with no U-Bend had no significant impact on PM2.5 deposition on the filters with 98.9% of PM2.5 being collected.


2019 ◽  
Vol 214 ◽  
pp. 116865
Author(s):  
Katsuya Toriyama ◽  
Kengo Fukae ◽  
Yusuke Suda ◽  
Tomofumi Kiyose ◽  
Takumi Oda ◽  
...  
Keyword(s):  

2018 ◽  
Vol 18 (22) ◽  
pp. 16293-16324 ◽  
Author(s):  
Y. Sim Tang ◽  
Christine F. Braban ◽  
Ulrike Dragosits ◽  
Ivan Simmons ◽  
David Leaver ◽  
...  

Abstract. The UK Acid Gases and Aerosol Monitoring Network (AGANet) was established in 1999 (12 sites, increased to 30 sites from 2006), to provide long-term national monitoring of acid gases (HNO3, SO2, HCl) and aerosol components (NO3−, SO42−, Cl−, Na+, Ca2+, Mg2+). An extension of a low-cost denuder-filter pack system (DELTA) that is used to measure NH3 and NH4+ in the UK National Ammonia Monitoring Network (NAMN) provides additional monthly speciated measurements for the AGANet. A comparison of the monthly DELTA measurement with averaged daily results from an annular denuder system showed close agreement, while the sum of HNO3 and NO3− and the sum of NH3 and NH4+ from the DELTA are also consistent with previous filter pack determination of total inorganic nitrogen and total inorganic ammonium, respectively. With the exception of SO2 and SO42−, the AGANet provides, for the first time, the UK concentration fields and seasonal cycles for each of the other measured species. The largest concentrations of HNO3, SO2, and aerosol NO3− and SO42− are found in southern and eastern England and smallest in western Scotland and Northern Ireland, whereas HCl are highest in south-eastern, south-western, and central England, that may be attributed to dual contribution from anthropogenic (coal combustion) and marine sources (reaction of sea salt with acid gases to form HCl). Na+ and Cl− are spatially correlated, with largest concentrations at coastal sites, reflecting a contribution from sea salt. Temporally, peak concentrations in HNO3 occurred in late winter and early spring attributed to photochemical processes. NO3− and SO42− have a spring maxima that coincides with the peak in concentrations of NH3 and NH4+, and are therefore likely attributable to formation of NH4NO3 and (NH4)2SO4 from reaction with higher concentrations of NH3 in spring. By contrast, peak concentrations of SO2, Na+, and Cl− during winter are consistent with combustion sources for SO2 and marine sources in winter for sea salt aerosol. Key pollutant events were captured by the AGANet. In 2003, a spring episode with elevated concentrations of HNO3 and NO3− was driven by meteorology and transboundary transport of NH4NO3 from Europe. A second, but smaller episode occurred in September 2014, with elevated concentrations of SO2, HNO3, SO42−, NO3−, and NH4+ that was shown to be from the Icelandic Holuhraun volcanic eruptions. Since 1999, AGANet has shown substantial decrease in SO2 concentrations relative to HNO3 and NH3, consistent with estimated decline in UK emissions. At the same time, large reductions and changes in the aerosol components provide evidence of a shift in the particulate phase from (NH4)2SO4 to NH4NO3. The potential for NH4NO3 to release NH3 and HNO3 in warm weather, together with the surfeit of NH3 also means that a larger fraction of the reduced and oxidized N is remaining in the gas phase as NH3 and HNO3 as indicated by the increasing trend in ratios of NH3 : NH4+ and HNO3 : NO3− over the 16-year period. Due to different removal rates of the component species by wet and dry deposition, this change is expected to affect spatial patterns of pollutant deposition with consequences for sensitive habitats with exceedance of critical loads of acidity and eutrophication. The changes are also relevant for human health effects assessment, particularly in urban areas as NH4NO3 constitutes a significant fraction of fine particulate matter ( < 2.5 µm) that are linked to increased mortality from respiratory and cardiopulmonary diseases.


Sign in / Sign up

Export Citation Format

Share Document