scholarly journals Novel approach for hybrid MAC scheme for balanced energy and transmission in sensor devices

Author(s):  
Anitha Krishna Gowda ◽  
Ananda Babu Jayachandra ◽  
Raviprakash Madenur Lingaraju ◽  
Vinay Doddametikurke Rajkumar

<p><span>Hybrid medium access control (MAC) scheme is one of the prominent mechanisms to offer energy efficiency in wireless sensor network where the potential features for both contention-based and schedule-based approaches are mechanized. However, the review of existing hybrid MAC scheme shows many loopholes where mainly it is observed that there is too much inclusion of time-slotting or else there is an inclusion of sophisticated mechanism not meant for offering flexibility to sensor node towards extending its services for upcoming applications of it. Therefore, this manuscript introduces a novel hybrid MAC scheme which is meant for offering cost effective and simplified scheduling operation in order to balance the performance of energy efficiency along with data aggregation performance. The simulated outcome of the study shows that proposed system offers better energy consumption, better throughput, reduced memory consumption, and faster processing in contrast to existing hybrid MAC protocols.</span></p>

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Seokhoon Kim ◽  
Hangki Joh ◽  
Seungjun Choi ◽  
Intae Ryoo

This paper presents a novel and sustainable medium access control (MAC) scheme for wireless sensor network (WSN) systems that process high-dimensional aggregated data. Based on a preamble signal and buffer threshold analysis, it maximizes the energy efficiency of the wireless sensor devices which have limited energy resources. The proposed group management MAC (GM-MAC) approach not only sets the buffer threshold value of a sensor device to be reciprocal to the preamble signal but also sets a transmittable group value to each sensor device by using the preamble signal of the sink node. The primary difference between the previous and the proposed approach is that existing state-of-the-art schemes use duty cycle and sleep mode to save energy consumption of individual sensor devices, whereas the proposed scheme employs the group management MAC scheme for sensor devices to maximize the overall energy efficiency of the whole WSN systems by minimizing the energy consumption of sensor devices located near the sink node. Performance evaluations show that the proposed scheme outperforms the previous schemes in terms of active time of sensor devices, transmission delay, control overhead, and energy consumption. Therefore, the proposed scheme is suitable for sensor devices in a variety of wireless sensor networking environments with high-dimensional data aggregate.


Author(s):  
Hemavathi P ◽  
Nandakumar A. N.

Clustering is one of the operations in the wireless sensor network that offers both streamlined data routing services as well as energy efficiency. In this viewpoint, Particle Swarm Optimization (PSO) has already proved its effectiveness in enhancing clustering operation, energy efficiency, etc. However, PSO also suffers from a higher degree of iteration and computational complexity when it comes to solving complex problems, e.g., allocating transmittance energy to the cluster head in a dynamic network. Therefore, we present a novel, simple, and yet a cost-effective method that performs enhancement of the conventional PSO approach for minimizing the iterative steps and maximizing the probability of selecting a better clustered. A significant research contribution of the proposed system is its assurance towards minimizing the transmittance energy as well as receiving energy of a cluster head. The study outcome proved proposed a system to be better than conventional system in the form of energy efficiency.


2017 ◽  
Vol 16 (3) ◽  
pp. 6213-6218
Author(s):  
Ramandeep Kaur ◽  
Dinesh Kumar

Wireless sensor networks have become increasingly popular due to their wide range of application. Clustering sensor nodes organizing them hierarchically have proven to be an effective method to provide better data aggregation and scalability for the sensor network while conserving limited energy. Minimizing the energy consumption of a wireless sensor network application is crucial for effective realization of the intended application in terms of cost, lifetime, and functionality. However, the minimizing task is hardly possible as no overall energy cost function is available for optimization. In this paper, we have proposed a modified alogirthm of leach where hard and soft threshold values will be applied for improving the overall throughput and network lifetime.


Author(s):  
Vijendra Babu D. ◽  
K. Nagi Reddy ◽  
K. Butchi Raju ◽  
A. Ratna Raju

A modern wireless sensor and its development majorly depend on distributed condition maintenance protocol. The medium access and its computing have been handled by multi hope sensor mechanism. In this investigation, WSN networks maintenance is balanced through condition-based access (CBA) protocol. The CBA is most useful for real-time 4G and 5G communication to handle internet assistance devices. The following CBA mechanism is energy efficient to increase the battery lifetime. Due to sleep mode and backup mode mechanism, this protocol maintains its energy efficiency as well as network throughput. Finally, 76% of the energy consumption and 42.8% of the speed of operation have been attained using CBI WSN protocol.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 534 ◽  
Author(s):  
Mahendra Ram ◽  
Sushil Kumar ◽  
Vinod Kumar ◽  
Ajay Sikandar ◽  
Rupak Kharel

Due to the rapidly growing sensor-enabled connected world around us, with the continuously decreasing size of sensors from smaller to tiny, energy efficiency in wireless sensor networks has drawn ample consideration in both academia as well as in industries’ R&D. The literature of energy efficiency in wireless sensor networks (WSNs) is focused on the three layers of wireless communication, namely the physical, Medium Access Control (MAC) and network layers. Physical layer-centric energy efficiency techniques have limited capabilities due to hardware designs and size considerations. Network layer-centric energy efficiency approaches have been constrained, in view of network dynamics and available network infrastructures. However, energy efficiency at the MAC layer requires a traffic cooperative transmission control. In this context, this paper presents a one-dimensional discrete-time Markov chain analytical model of the Timeout Medium Access Control (T-MAC) protocol. Specifically, an analytical model is derived for T-MAC focusing on an analysis of service delay, throughput, energy consumption and power efficiency under unsaturated traffic conditions. The service delay model calculates the average service delay using the adaptive sleep wakeup schedules. The component models include a queuing theory-based throughput analysis model, a cycle probability-based analytical model for computing the probabilities of a successful transmission, collision, and the idle state of a sensor, as well as an energy consumption model for the sensor’s life cycle. A fair performance assessment of the proposed T-MAC analytical model attests to the energy efficiency of the model when compared to that of state-of-the-art techniques, in terms of better power saving, a higher throughput and a lower energy consumption under various traffic loads.


2018 ◽  
Vol 7 (2.27) ◽  
pp. 132
Author(s):  
Avneet Kaur ◽  
Neeraj Sharma

The wireless sensor is deployed to sense large amount of data from the far places. With the large deployment of the sensor networks, it faces major issues like energy consumption, dynamic routing and security. The Energy efficient structure-free data aggregation and delivery (ESDAD) is the protocol which is hierarchal in nature. The ESDAD protocol can be further improved to increase lifetime of wireless sensor networks. The base station localizes the position of each sensor node and defines level of each node for the data transmission. In the ESDAD protocol, the next hop node is selected based on cost function for the data transmission. In this research work, improved in ESDAD protocol is proposed in which gateway nodes are deployed after each level for the data transmission. The sensor node will sense the information and transmit it to gateway node. The gateway node aggregates data to the base station and simulation results show that improved ESDAD protocol performs well in terms of energy consumption and number of throughput. 


Sign in / Sign up

Export Citation Format

Share Document