Lacustrine leaf wax hydrogen isotopes indicate strong regional climate feedbacks in Beringia since the last ice age

2021 ◽  
Vol 269 ◽  
pp. 107130
Author(s):  
W.C. Daniels ◽  
J.M. Russell ◽  
C. Morrill ◽  
W.M. Longo ◽  
A.E. Giblin ◽  
...  
2015 ◽  
Vol 3 (1) ◽  
pp. 237-250
Author(s):  
Robert G. Johnson

Numerical modeling has failed to confirm the classical Milankovitch hypothesis of initiation of the last ice age by Northern Hemisphere high latitude cooling due to decreasing summer insolation caused by orbital effects. The modeling failed to confirm ice sheet growth even with a widespread layer of glacial ice as an initial condition to embody positive feedback. The failure probably occurred because the initial conditions of the calculation did not include the actual effects of an altered climate in northeastern Canada that brought a sharp cooling to Europe and extreme amounts of precipitation to cloud-covered lands west of Greenland. In the conceptual model proposed here, diminishing orbital summer insolation in northern Africa is causally linked to this regional climate change by a cascade of oceanic salinity changes. The summer cooling in northern Africa weakened the monsoons, reduced the Nile River flow, and increased Mediterranean salinity and outflow at Gibraltar. The salt in the outflow contributes substantially to the salinities of the North Atlantic Drift and the Greenland Sea, to the formation rate of North Atlantic Deep Water (NADW) there, and to the northward flow of the Spitsbergen-Atlantic Current (SAC) that replaces the sinking NADW. When the increasing salt in the Mediterranean outflow made the SAC replacement flow sufficiently strong, the flow penetrated into the polar ocean along the north coast of Greenland. Denser and more saline Atlantic water then replaced the polar water flowing southward into Baffin Bay through the Nares Strait and Lancaster Sound, thus eliminating the stratification in the bay that enables freezing of winter sea ice. Without the southward flow of sea ice out of Baffin Bay, the Labrador Sea became much warmer. The warmer seas west of Greenland then triggered a persistent cyclonic circulation that caused large amounts of precipitation in eastern Canada and a much colder northern Europe. The resulting Canadian erosion yielded a 500yr-long deep-sea sediment record of the ice-free condition. Heavy snowfall started new ice sheet growth on Baffin Island, northern Quebec, Labrador, western Greenland, and the Barents Sea, causing world sea level to fall at a rate of 0.5cmyr-1. The modern increasing salinity of the Mediterranean Sea and extension of SAC flow into the polar ocean are now following the cascade steps toward an ice-free Baffin Bay and possible near term regional climate deterioration.


The Holocene ◽  
2021 ◽  
pp. 095968362110032
Author(s):  
Paul B Hamilton ◽  
Scott J Hutchinson ◽  
R Timothy Patterson ◽  
Jennifer M Galloway ◽  
Nawaf A Nasser ◽  
...  

The paleolimnological record of diatoms and climate, spanning the last 2800 years, was investigated in a small subarctic lake (Pocket Lake) that from AD 1948 to 2004 was contaminated by gold smelting waste. An age-depth model was constructed using a combination of 210Pb, 14C, and tephra to determine a 2800 year history of lake ontogeny (natural aging), biological diversity, and regional climate variability. Diatoms form six strong paleoecological assemblages over time in response to changes in local hydrological and sedimentological conditions (including metals). Selected environmental variables explained 28.8% of the variance in the diatom assemblages, with Fe, Ca, and sediment end member distribution being important indicators. The diatom assemblages correlated to the Iron Age Cold Epoch (2800–2300 cal BP), Roman Warm Period (2250–1610 cal BP), Dark Age Cold Period (1500–1050 cal BP), Medieval Climate Anomaly (ca. 1100–800 cal BP), and the Little Ice Age (800–200 cal BP). The disappearance of Staurosira venter highlights the change from the Iron Age Cold Epoch to the Roman Warm Period. After deposition of the White River Ash (833–850 CE; 1117–1100 cal BP), transition to circumneutral conditions was followed in tandem by a transition to planktic influenced communities. Ten discrete peaks of Cu, Pb, and Zn were observed and attributed to soluble mobility from catchment soils through enhanced seepage and spring snowmelt. The prominent metal spikes were aligned with increases in Brachysira neoexilis. Downward mobilization of arsenic and antimony from contaminated surficial sediments highlight the problem of post depositional industrial contamination of paleosediments. Results demonstrate that paleoclimatic changes in the region, modulated by solar radiation, impacted temperature and precipitation in the lake catchment, influencing temporal shifts in diatom ecology. Changes in diatom taxa richness provided valuable information on the relative influence of water quality (planktic taxa) and sediment input (benthic taxa). The diatom assemblage succession also provides evidence that natural aging over time has played a role in the ecological evolution of the lake.


2021 ◽  
Author(s):  
Jesse R. Farmer ◽  
Daniel M. Sigman ◽  
Julie Granger ◽  
Ona M. Underwood ◽  
François Fripiat ◽  
...  

AbstractSalinity-driven density stratification of the upper Arctic Ocean isolates sea-ice cover and cold, nutrient-poor surface waters from underlying warmer, nutrient-rich waters. Recently, stratification has strengthened in the western Arctic but has weakened in the eastern Arctic; it is unknown if these trends will continue. Here we present foraminifera-bound nitrogen isotopes from Arctic Ocean sediments since 35,000 years ago to reconstruct past changes in nutrient sources and the degree of nutrient consumption in surface waters, the latter reflecting stratification. During the last ice age and early deglaciation, the Arctic was dominated by Atlantic-sourced nitrate and incomplete nitrate consumption, indicating weaker stratification. Starting at 11,000 years ago in the western Arctic, there is a clear isotopic signal of Pacific-sourced nitrate and complete nitrate consumption associated with the flooding of the Bering Strait. These changes reveal that the strong stratification of the western Arctic relies on low-salinity inflow through the Bering Strait. In the central Arctic, nitrate consumption was complete during the early Holocene, then declined after 5,000 years ago as summer insolation decreased. This sequence suggests that precipitation and riverine freshwater fluxes control the stratification of the central Arctic Ocean. Based on these findings, ongoing warming will cause strong stratification to expand into the central Arctic, slowing the nutrient supply to surface waters and thus limiting future phytoplankton productivity.


2017 ◽  
Vol 30 (60) ◽  
pp. 253-272 ◽  
Author(s):  
Diego Olstein

Abstract World history can be arranged into three major regional divergences: the 'Greatest Divergence' starting at the end of the last Ice Age (ca. 15,000 years ago) and isolating the Old and the New Worlds from one another till 1500; the 'Great Divergence' bifurcating the paths of Europe and Afro-Asia since 1500; and the 'American Divergence' which divided the fortunes of New World societies from 1500 onwards. Accordingly, all world regions have confronted two divergences: one disassociating the fates of the Old and New Worlds, and the other within either the Old or the New World. Latin America is in the uneasy position that in both divergences it ended up on the 'losing side.' As a result, a contentious historiography of Latin America evolved from the very moment that it was incorporated into the wider world. Three basic attitudes toward the place of Latin America in global history have since emerged and developed: admiration for the major impact that the emergence on Latin America on the world scene imprinted on global history; hostility and disdain over Latin America since it entered the world scene; direct rejection of and head on confrontation in reaction the former. This paper examines each of these three attitudes in five periods: the 'long sixteenth century' (1492-1650); the 'age of crisis' (1650-1780); 'the long nineteenth century' (1780-1914); 'the short twentieth century' (1914-1991); and 'contemporary globalization' (1991 onwards).


2020 ◽  
Author(s):  
Sarah Nemiah Ladd ◽  
Ashley Elizabeth Maloney ◽  
Daniel Nelson ◽  
Matthew Prebble ◽  
Giorgia Camperio ◽  
...  

2003 ◽  
Vol 59 (1) ◽  
pp. 114-121 ◽  
Author(s):  
Martin J. Siegert ◽  
Richard C. A. Hindmarsh ◽  
Gordon S. Hamilton

AbstractInternal isochronous ice sheet layers, recorded by airborne ice-penetrating radar, were measured along an ice flowline across a large (>1 km high) subglacial hill in the foreground of the Transantarctic Mountains. The layers, dated through an existing stratigraphic link with the Vostok ice core, converge with the ice surface as ice flows over the hill without noticeable change to their separation with each other or the ice base. A two-dimensional ice flow model that calculates isochrons and particle flowpaths and accounts for ice flow over the hill under steady-state conditions requires net ablation (via sublimation) over the stoss face for the predicted isochrons to match the measured internal layers. Satellite remote sensing data show no sign of exposed ancient ice at this site, however. Given the lack of exposed glacial ice, surface balance conditions must have changed recently from the net ablation that is predicted at this site for the last 85,000 years to accumulation.


1988 ◽  
Vol 10 ◽  
pp. 5-9 ◽  
Author(s):  
Claude F. Boutron ◽  
Clair C. Patterson ◽  
Claude Lorius ◽  
V.N. Petrov ◽  
N.I. Barkov

Concentrations of lead (Pb) have been measured by the ultra-clean isotope dilution mass spectrometry technique in various sections of the Antarctic Dome C and Vostok deep ice cores, whose ages range from 3.85 to 155 ka B.P., in order to assess the natural, pre-human, sources of this toxic heavy metal in the global troposphere. Pb concentrations were very low, as low as about 0.3 pg Pb/g during the Holocene and probably during the last interglacial and part of the last ice age. On the other hand, they were quite high, up to about 40 pg Pb/g, during the Last Glacial Maximum and at the end of the penultimate ice age. Wind-blown dust from crustal rock and soil appears to be the main natural source of Pb in the global troposphere. Pb contribution from volcanoes is significant during periods of low Pb only. Contribution from the oceans is insignificant.


2010 ◽  
Vol 17 (5) ◽  
pp. 585-592 ◽  
Author(s):  
C. S. Quiroga Lombard ◽  
P. Balenzuela ◽  
H. Braun ◽  
D. R. Chialvo

Abstract. Spectral analyses performed on records of cosmogenic nuclides reveal a group of dominant spectral components during the Holocene period. Only a few of them are related to known solar cycles, i.e., the De Vries/Suess, Gleissberg and Hallstatt cycles. The origin of the others remains uncertain. On the other hand, time series of North Atlantic atmospheric/sea surface temperatures during the last ice age display the existence of repeated large-scale warming events, called Dansgaard-Oeschger (DO) events, spaced around multiples of 1470 years. The De Vries/Suess and Gleissberg cycles with periods close to 1470/7 (~210) and 1470/17 (~86.5) years have been proposed to explain these observations. In this work we found that a conceptual bistable model forced with the De Vries/Suess and Gleissberg cycles plus noise displays a group of dominant frequencies similar to those obtained in the Fourier spectra from paleo-climate during the Holocene. Moreover, we show that simply changing the noise amplitude in the model we obtain similar power spectra to those corresponding to GISP2 δ18O (Greenland Ice Sheet Project 2) during the last ice age. These results give a general dynamical framework which allows us to interpret the main characteristic of paleoclimate records from the last 100 000 years.


Author(s):  
Jessica Uglesich ◽  
Robert J Gay ◽  
M. Allison Stegner ◽  
Adam K Huttenlocker ◽  
Randall B Irmis

Bears Ears National Monument (BENM) is a new, landscape-scale national monument jointly administered by the Bureau of Land Management and the Forest Service in southeastern Utah as part of the National Conservation Lands system. As initially designated, BENM encompasses 1.3 million acres of land with exceptionally fossiliferous rock units. These units comprise a semi-continuous depositional record from the Pennsylvanian Period through the middle of the Cretaceous Period. Additional Quaternary and Holocene deposits are known from unconsolidated river gravels and cave deposits. The fossil record from BENM provides unique insights into several important paleontological periods of time, including the Pennsylvanian-Permian transition from fully aquatic to more fully terrestrial tetrapods; the rise of the dinosaurs following the Triassic-Jurassic extinction; and the response of ecosystems in dry climates to sudden temperature increases at the end of the last ice age and across the Holocene. While the paleontological resources of BENM are extensive, they have historically been under-studied. Here we summarize prior paleontological work in BENM and review the data used to support paleontological resource protection in the 2016 BENM proclamation.


Sign in / Sign up

Export Citation Format

Share Document