bulk phonon
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
pp. 2100103
Author(s):  
Yuan‐Fei Gao ◽  
Jia‐Min Lai ◽  
Jun Zhang

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Bo Peng ◽  
Shuichi Murakami ◽  
Bartomeu Monserrat ◽  
Tiantian Zhang

AbstractDegenerate points/lines in the band structures of crystals have become a staple of the growing number of topological materials. The bulk-boundary correspondence provides a relation between bulk topology and surface states. While line degeneracies of bulk excitations have been extensively characterised, line degeneracies of surface states are not well understood. We show that SnIP, a quasi-one-dimensional van der Waals material with a double helix crystal structure, exhibits topological nodal rings/lines in both the bulk phonon modes and their corresponding surface states. Using a combination of first-principles calculations, symmetry-based indicator theories and Zak phase analysis, we find that two neighbouring bulk nodal rings form doubly degenerate lines in their drumhead-like surface states, which are protected by the combination of time-reversal symmetry $${{{\mathcal{T}}}}$$ T and glide mirror symmetry $${\bar{M}}_{y}$$ M ¯ y . Our results indicate that surface degeneracies can be generically protected by symmetries such as $${{{\mathcal{T}}}}{\bar{M}}_{y}$$ T M ¯ y , and phonons provide an ideal platform to explore such degeneracies.


2019 ◽  
Vol 6 (6) ◽  
pp. 065101 ◽  
Author(s):  
V. Tinnemann ◽  
C. Streubühr ◽  
B. Hafke ◽  
T. Witte ◽  
A. Kalus ◽  
...  

2019 ◽  
Vol 5 (4) ◽  
pp. eaav0582 ◽  
Author(s):  
Prashanta Kharel ◽  
Glen I. Harris ◽  
Eric A. Kittlaus ◽  
William H. Renninger ◽  
Nils T. Otterstrom ◽  
...  

To date, microscale and nanoscale optomechanical systems have enabled many proof-of-principle quantum operations through access to high-frequency (gigahertz) phonon modes that are readily cooled to their thermal ground state. However, minuscule amounts of absorbed light produce excessive heating that can jeopardize robust ground-state operation within these microstructures. In contrast, we demonstrate an alternative strategy for accessing high-frequency (13 GHz) phonons within macroscopic systems (centimeter scale) using phase-matched Brillouin interactions between two distinct optical cavity modes. Counterintuitively, we show that these macroscopic systems, with motional masses that are 1 million to 100 million times larger than those of microscale counterparts, offer a complementary path toward robust ground-state operation. We perform both optomechanically induced amplification/transparency measurements and demonstrate parametric instability of bulk phonon modes. This is an important step toward using these beam splitter and two-mode squeezing interactions within bulk acoustic systems for applications ranging from quantum memories and microwave-to-optical conversion to high-power laser oscillators.


Author(s):  
Bau Nguyen Quang ◽  
Cao Thi Vi Ba ◽  
Do Tuan Long

Abstract. Based on the quantum kinetic equation method, the influence of confined optical phonons and laser radiation on the Radioelectric effect in a cylindrical semiconductor quantum wire with parabolic potential subjected to a dc electric field and a linearly polarized electromagnetic wave has been theoretically studied. The obtained analytical expression of the Radioelectric field (REF) depends on frequencies and amplitudes of the external electromagnetic waves, the quantum wire parameters, the temperature of the system, and especially the quantum numbers (n and m) which characterize the phonon confinement. Numerical calculations for the GaAs/GaAsAl quantum wire show the strongly impact of the confined optical phonons as well as the laser radiation on the REF magnitude and posture. The REF also has more resonance peaks in comparison with that in case of bulk phonon.


Author(s):  
Qing Hao ◽  
Yue Xiao ◽  
Hongbo Zhao

Phonon transport within nanoporous bulk materials or thin films is of importance to applications in thermoelectrics, gas sensors, and thermal insulation materials. Considering classical phonon size effects, the lattice thermal conductivity KL can be predicted assuming diffusive pore-edge scattering of phonons and bulk phonon mean free paths. In the kinetic relationship, kL can be computed by modifying the phonon mean free paths with the characteristic length ΛPore of the porous structure. Despite some efforts using the Monte Carlo ray tracing method to extract ΛPore, the resulting KL often diverges from that predicted by phonon Monte Carlo simulations. In this work, the effective ΛPore is extracted by directly comparing the predictions by the kinetic relationship and phonon Monte Carlo simulations. The investigation covers a wide range of period sizes and volumetric porosities. In practice, these ΛPore values can be used for thermal analysis of general nanoporous materials.


Author(s):  
D. P. Sellan ◽  
V. Mishra ◽  
J. A. Malen ◽  
A. J. H. McGaughey ◽  
C. H. Amon

We assess a Fourier-based thermal model used in frequency-domain thermoreflectance data analysis. The Boltzmann transport equation (BTE) is first used to simulate sub-continuum phonon transport in a semi-infinite solid. We then compare the BTE-predicted temperature profiles to those predicted by an analytical solution of the Fourier-based conduction equation. The two models agree well when ωτ < 1, where ω is the surface-temperature modulation-frequency and τ is the bulk phonon relaxation time, but diverge when ωτ > 1.


Sign in / Sign up

Export Citation Format

Share Document