large protein complex
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 5)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Marion E. Pesenti ◽  
Tobias Raisch ◽  
Duccio Conti ◽  
Ingrid Hoffmann ◽  
Dorothee Vogt ◽  
...  

Centromeres are specialized chromosome loci that seed the kinetochore, a large protein complex that effects chromosome segregation. The organization of the interface between the kinetochore and the specialized centromeric chromatin, marked by the histone H3 variant CENP-A, remains incompletely understood. A 16-subunit complex, the constitutive centromere associated network (CCAN), bridges CENP-A to the spindle-binding moiety of the kinetochore. Here, we report a cryo-electron microscopy structure of human CCAN. We highlight unique features such as the pseudo GTPase CENP-M and report how a crucial CENP-C motif binds the CENP-LN complex. The CCAN structure has also important implications for the mechanism of specific recognition of the CENP-A nucleosome. A supported model depicts the interaction as fuzzy and identifies the disordered CCAN subunit CENP-C as only determinant of specificity. A more speculative model identifies both CENP-C and CENP-N as specificity determinants, but implies CENP-A may be in a hemisome rather than in a classical octamer.


2021 ◽  
Vol 31 (3) ◽  
pp. 517-527
Author(s):  
Serban BALANESCU ◽  
◽  
Elena BARBU ◽  
Camelia GEORGESCU ◽  
Andreea Catarina POPESCU ◽  
...  

Inflammation is involved in initiation, development and complications of the vast majority of non-communicable diseases. Recent research demonstrated that infl ammation is involved in pathogenesis of all major cardiovascular diseases. Different endogenous factors (LDL, nucleic acid strands, uric acid – collectively called „Damage Associated Molecular Patterns – DAMPs”) activate dedicated receptors („Pattern Recognition Receptors – PRR”) on monocytes, macrophages or dendritic cells responsible for the innate immunologic response. They have a major role in natural defense mechanisms against different pathogens and in normal conditions have a protective role. Among PRRs „NOD-like, leucin rich, pyrin containing (NLRP)” receptors are a 14-member family located in the cytoplasm. One of these is the NLRP3 resulting from nuclear transcription under the infl uence of NF-kB, a second messenger from membrane PRRs to the nucleus. Mostly the same factors responsible for NLRP3 intracellular expression stimulate its oligomerization resulting in a large protein complex, the NLRP3 infl ammasome. This activates caspase-1 responsible for IL-1b and IL-18 production and initiates an inflammatory reaction leading to various pathologic processes, such as atherosclerosis, hypertension, diabetes and heart failure. This is the current story as we know it of the NLRP3 infl ammasome, a small intracellular component that when inappropriately activated may does more harm than good.


2019 ◽  
Vol 476 (19) ◽  
pp. 2743-2756 ◽  
Author(s):  
Deserah D. Strand ◽  
Lucio D'Andrea ◽  
Ralph Bock

Abstract The thylakoid NAD(P)H dehydrogenase-like (NDH) complex is a large protein complex that reduces plastoquinone and pumps protons into the lumen generating protonmotive force. In plants, the complex consists of both nuclear and chloroplast-encoded subunits. Despite its perceived importance for stress tolerance and ATP generation, chloroplast-encoded NDH subunits have been lost numerous times during evolution in species occupying seemingly unrelated environmental niches. We have generated a phylogenetic tree that reveals independent losses in multiple phylogenetic lineages, and we use this tree as a reference to discuss possible evolutionary contexts that may have relaxed selective pressure for retention of ndh genes. While we are still yet unable to pinpoint a singular specific lifestyle that negates the need for NDH, we are able to rule out several long-standing explanations. In light of this, we discuss the biochemical changes that would be required for the chloroplast to dispense with NDH functionality with regards to known and proposed NDH-related reactions.


2019 ◽  
Author(s):  
Fabienne Wagner ◽  
Tobias C. Kunz ◽  
Suvagata R. Chowdhury ◽  
Bernd Thiede ◽  
Martin Fraunholz ◽  
...  

AbstractCristae architecture is important for the function of mitochondria, the organelles that play the central role in many cellular processes. The mitochondrial contact site and cristae organizing system (MICOS) together with the sorting and assembly machinery (SAM) forms the mitochondrial intermembrane space bridging complex (MIB), a large protein complex present in mammalian mitochondria that partakes in the formation and maintenance of cristae. We report here a new subunit of the mammalian MICOS/MIB complex, an armadillo repeat-containing protein 1 (ArmC1). ArmC1 localizes both to cytosol and mitochondria, where it associates with the outer mitochondrial membrane through its carboxy-terminus. ArmC1 interacts with other constituents of the MICOS/MIB complex and its amounts are reduced upon MICOS/MIB complex depletion. Mitochondria lacking ArmC1 do not show defects in cristae structure, respiration or protein content, but appear fragmented and with reduced motility. ArmC1 represents therefore a peripheral MICOS/MIB component that appears to play a role in mitochondrial distribution in the cell.


2019 ◽  
Vol 1 ◽  
pp. 100003 ◽  
Author(s):  
Yujia Zhai ◽  
Danyang Zhang ◽  
Leiye Yu ◽  
Fang Sun ◽  
Fei Sun

2017 ◽  
Author(s):  
Yujia Zhai ◽  
Danyang Zhang ◽  
Leiye Yu ◽  
Fang Sun ◽  
Fei Sun

ABSTRACTRecent revolution of cryo-electron microscopy has opened a new door to solve high-resolution structures of macromolecule complexes without crystallization while how to efficiently obtain homogenous macromolecule complex sample is therefore becoming a bottleneck. Here we report SmartBac, an easy and versatile system for constructing large-sized transfer plasmids used to generate recombinant baculoviruses that express large multiprotein complexes in insect cells. The SmartBac system integrates the univector plasmid-fusion system, Gibson assembly method and polyprotein strategy to construct the final transfer plasmids. The fluorescent proteins are designed to be co-expressed with recombinant proteins to monitor transfection and expression efficiencies. A scheme of screening an optimal tagged subunit for effective purification is provided. Six large multiprotein complexes including the human exocyst complex and dynactin complex were successfully expressed, suggesting a great potential of SmartBac for its wide application in the future structural biology study.


2017 ◽  
Vol 474 (11) ◽  
pp. 1789-1801 ◽  
Author(s):  
John W. Riggs ◽  
Judy Callis

The Arabidopsis thaliana fructokinase-like proteins FLN1 and FLN2 are required for the differentiation of plastids into photosynthetically competent chloroplasts. However, their specific roles are unknown. FLN1 and FLN2 localize in a multisubunit prokaryotic-type polymerase (plastid-encoded RNA polymerase) complex that transcribes genes encoding components of photosynthesis-related assemblies. Despite sequence identity with fructokinases, which are members of the pfkB (phosphofructokinase B) family of enzymes, kinase activity of FLN1 and FLN2 has not been demonstrated. Homology modeling using pfkB X-ray structures, sequence comparisons, and mutational analyses suggests that FLN proteins may bind their substrates differently from other pfkB proteins. We provide evidence that purified recombinant FLN1 undergoes an ATP-mediated change in binding affinity with both itself and recombinant FLN2. The ATP-mediated change in the affinity of FLN1 for FLN2 is not affected by mutations in conserved active-site residues known to affect catalysis in active pfkB enzymes. In contrast, recombinant FLN2 hetero-oligomerizes independently of ATP concentration. At ATP concentrations that promote FLN1 homomeric interactions, the FLN1–FLN2 hetero-oligomer is the dominant form in vitro. We further present evidence that FLN1 associates with a large protein complex in chloroplasts independently of ATP. Given that ATP levels fluctuate between light–dark cycles in the 1–5 mM range, we propose that changes in FLN1 and FLN2 interactions are biologically meaningful.


The Analyst ◽  
2016 ◽  
Vol 141 (1) ◽  
pp. 157-165 ◽  
Author(s):  
H. J. Simon ◽  
M. A. van Agthoven ◽  
P. Y. Lam ◽  
F. Floris ◽  
L. Chiron ◽  
...  

Two dimensional mass spectrometry can provide structural information on all peptide ions simultaneously from the tryptic digest of a large protein complex.


2014 ◽  
Vol 204 (7) ◽  
pp. 1083-1086 ◽  
Author(s):  
Nikolaus Pfanner ◽  
Martin van der Laan ◽  
Paolo Amati ◽  
Roderick A. Capaldi ◽  
Amy A. Caudy ◽  
...  

The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex “mitochondrial contact site and cristae organizing system” and its subunits Mic10 to Mic60.


2013 ◽  
Vol 24 (5) ◽  
pp. 566-577 ◽  
Author(s):  
Daniel Richmond ◽  
Raed Rizkallah ◽  
Fengshan Liang ◽  
Myra M. Hurt ◽  
Yanchang Wang

In all eukaryotic cells, DNA is packaged into multiple chromosomes that are linked to microtubules through a large protein complex called a kinetochore. Previous data show that the kinetochores are clustered together during most of the cell cycle, but the mechanism and the biological significance of kinetochore clustering are unknown. As a kinetochore protein in budding yeast, the role of Slk19 in the stability of the anaphase spindle has been well studied, but its function in chromosome segregation has remained elusive. Here we show that Slk19 is required for kinetochore clustering when yeast cells are treated with the microtubule-depolymerizing agent nocodazole. We further find that slk19Δ mutant cells exhibit delayed kinetochore capture and chromosome bipolar attachment after the disruption of the kinetochore–microtubule interaction by nocodazole, which is likely attributed to defective kinetochore clustering. In addition, we show that Slk19 interacts with itself, suggesting that the dimerization of Slk19 may mediate the interaction between kinetochores for clustering. Therefore Slk19 likely acts as kinetochore glue that clusters kinetochores to facilitate efficient and faithful chromosome segregation.


Sign in / Sign up

Export Citation Format

Share Document