glycerol transport
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 7)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Michael Falato ◽  
Ruth Chen ◽  
Liao Y Chen

AQP7 is one of the four human aquaglyceroporins that facilitate glycerol transport across the cell membrane, a biophysical process that is essential in human physiology. Therefore, it is interesting to compute AQP7s affinity for its substrate (glycerol) with reasonable certainty to compare with the experimental data suggesting high affinity in contrast with most computational studies predicting low affinity. In this study aimed at computing the AQP7-glycerol affinity with high confidence, we implemented a direct computation of the affinity from unbiased equilibrium molecular dynamics (MD) simulations of three all-atom systems constituted with 0.16M, 4.32M, and 10.23M atoms, respectively. These three sets of simulations manifested a fundamental physics law that the intrinsic fluctuations of pressure in a system are inversely proportional to the system size (the number of atoms in it). These simulations showed that the computed values of glycerol-AQP7 affinity are dependent upon the system size (the inverse affinity estimations were, respectively, 47.3 mM, 1.6 mM, and 0.92 mM for the three model systems). In this, we obtained a lower bound for the AQP7-glycerol affinity (an upper bound for the dissociation constant). Namely, the AQP7-glycerol affinity is stronger than 1087/M (the dissociation constant is less than 0.92 mM). Additionally, we conducted hyper steered MD (hSMD) simulations to map out the Gibbs free-energy profile. From the free-energy profile, we produced an independent computation of the AQP7-glycerol dissociation constant being approximately 0.18 mM.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mariko Hara-Chikuma ◽  
Manami Tanaka ◽  
Alan S. Verkman ◽  
Masato Yasui

Abstract Aquaporin 3 (AQP3) is a transporter of water, glycerol and hydrogen peroxide (H2O2) that is expressed in various epithelial cells and in macrophages. Here, we developed an anti-AQP3 monoclonal antibody (mAb) that inhibited AQP3-facilitated H2O2 and glycerol transport, and prevented liver injury in experimental animal models. Using AQP3 knockout mice in a model of liver injury and fibrosis produced by CCl4, we obtained evidence for involvement of AQP3 expression in nuclear factor-κB (NF-κB) cell signaling, hepatic oxidative stress and inflammation in macrophages during liver injury. The activated macrophages caused stellate cell activation, leading to liver injury, by a mechanism involving AQP3-mediated H2O2 transport. Administration of an anti-AQP3 mAb, which targeted an extracellular epitope on AQP3, prevented liver injury by inhibition of AQP3-mediated H2O2 transport and macrophage activation. These findings implicate the involvement of macrophage AQP3 in liver injury, and provide evidence for mAb inhibition of AQP3-mediated H2O2 transport as therapy for macrophage-dependent liver injury.


2020 ◽  
Author(s):  
Roberto A. Rodriguez ◽  
Ruth Chan ◽  
Huiyun Liang ◽  
Liao Y. Chen

Graphical AbstractABSTRACTThe structures of several aquaglyceroporins have been resolved to atomic resolution showing two or more glycerols bound inside a channel and confirming a glycerol-facilitator’s affinity for its substrate glycerol. However, the kinetics data of glycerol transport experiments all point to unsaturated transport that is characteristic of low substrate affinity in terms of the Michaelis-Menten kinetics. In this article, we present an in silico-in vitro research focused on AQP3, one of the human aquaglyceroporins that is natively expressed in the abundantly available erythrocytes. We conducted 2.1 μs in silico simulations of AQP3 embedded in a model erythrocyte membrane with intracellular-extracellular asymmetries in leaflet lipid compositions and compartment salt ions. From the equilibrium molecular dynamics (MD), we elucidated the mechanism of glycerol transport at high substrate concentrations. From the steered MD simulations, we computed the Gibbs free-energy profile throughout the AQP3 channel. From the free-energy profile, we quantified the kinetics of glycerol transport that is unsaturated due to glycerol-glycerol interaction mediated by AQP3 resulting in the concerted movement of two glycerol molecules for the transport of one glycerol molecule across the cell membrane. We conducted in vitro experiments on glycerol uptake into human erythrocytes for a wide range of substrate concentrations and various temperatures. The experimental data quantitatively validated our theoretical-computational conclusions on the unsaturated glycerol transport through AQP3 that has high affinity for glycerol.


2020 ◽  
Author(s):  
Juan F. Quintana ◽  
Juan Bueren-Calabuig ◽  
Fabio Zuccotto ◽  
Harry P. de Koning ◽  
David Horn ◽  
...  

AbstractDefining mode of action is vital for both developing new drugs and predicting potential resistance mechanisms. African trypanosome pentamidine and melarsoprol sensitivity is predominantly mediated by aquaglyceroporin 2 (TbAQP2), a channel associated with water/glycerol transport. TbAQP2 is expressed at the flagellar pocket membrane and chimerisation with TbAQP3 renders parasites resistant to both drugs. Two models for how TbAQP2 mediates pentamidine sensitivity have emerged; that TbAQP2 mediates pentamidine translocation or via binding to TbAQP2, with subsequent endocytosis, but trafficking and regulation of TbAQPs is uncharacterised. We demonstrate that TbAQP2 is organised as a high order complex, is ubiquitylated and transported to the lysosome. Unexpectedly, mutation of potential ubiquitin conjugation sites, i.e. cytoplasmic lysine residues, reduced folding and tetramerization efficiency and triggered ER retention. Moreover, TbAQP2/TbAQP3 chimerisation also leads to impaired oligomerisation, mislocalisation, and increased turnover. These data suggest that TbAQP2 stability is highly sensitive to mutation and contributes towards emergence of drug resistance.


2020 ◽  
Vol 21 (2) ◽  
pp. 663 ◽  
Author(s):  
Farzana Sabir ◽  
Sara Gomes ◽  
Maria C. Loureiro-Dias ◽  
Graça Soveral ◽  
Catarina Prista

Plant Nodulin 26-like Intrinsic Proteins (NIPs) are multifunctional membrane channels of the Major Intrinsic Protein (MIP) family. Unlike other homologs, they have low intrinsic water permeability. NIPs possess diverse substrate selectivity, ranging from water to glycerol and to other small solutes, depending on the group-specific amino acid composition at aromatic/Arg (ar/R) constriction. We cloned three NIPs (NIP1;1, NIP5;1, and NIP6;1) from grapevine (cv. Touriga Nacional). Their expression in the membrane of aqy-null Saccharomyces cerevisiae enabled their functional characterization for water and glycerol transport through stopped-flow spectroscopy. VvTnNIP1;1 demonstrated high water as well as glycerol permeability, whereas VvTnNIP6;1 was impermeable to water but presented high glycerol permeability. Their transport activities were declined by cytosolic acidification, implying that internal-pH can regulate NIPs gating. Furthermore, an extension of C-terminal in VvTnNIP6;1M homolog, led to improved channel activity, suggesting that NIPs gating is putatively regulated by C-terminal. Yeast growth assays in the presence of diverse substrates suggest that the transmembrane flux of metalloids (As, B, and Se) and the heavy metal (Cd) are facilitated through grapevine NIPs. This is the first molecular and functional characterization of grapevine NIPs, providing crucial insights into understanding their role for uptake and translocation of small solutes, and extrusion of toxic compounds in grapevine.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1316 ◽  
Author(s):  
Tong ◽  
Hu ◽  
Zhu ◽  
Dong

Aquaporins are integral membrane proteins that facilitate the diffusion of water and other small, uncharged solutes across the cellular membrane and are widely distributed in organisms from humans to bacteria. However, the characteristics of prokaryotic aquaporins remain largely unknown. We investigated the distribution and sequence characterization of aquaporins in prokaryotic organisms and summarized the transport characteristics, physiological functions, and regulatory mechanisms of prokaryotic aquaporins. Aquaporin homologues were identified in 3315 prokaryotic genomes retrieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, but the protein clustering pattern is not completely congruent with the phylogeny of the species that carry them. Moreover, prokaryotic aquaporins display diversified aromatic/arginine constriction region (ar/R) amino acid compositions, implying multiple functions. The typical water and glycerol transport characterization, physiological functions, and regulations have been extensively studied in Escherichia coli AqpZ and GlpF. A Streptococcus aquaporin has recently been verified to facilitate the efflux of endogenous H2O2, which not only contributes to detoxification but also to species competitiveness, improving our understanding of prokaryotic aquaporins. Furthermore, recent studies revealed novel regulatory mechanisms of prokaryotic aquaporins at post-translational level. Thus, we propose that intensive investigation on prokaryotic aquaporins would extend the functional categories and working mechanisms of these ubiquitous, intrinsic membrane proteins.


2019 ◽  
Vol 10 (29) ◽  
pp. 6957-6965 ◽  
Author(s):  
Dongdong Wang ◽  
Jingwei Weng ◽  
Wenning Wang

We present a strategy to obtained non-equilibrium transport kinetics of membrane channels through atomistic MD simulations. Using two kinetic models, the permeation fluxes of aquaglyceroporin GlpF under various concentration gradients were calculated.


2017 ◽  
Vol 13 (3) ◽  
pp. e1006307 ◽  
Author(s):  
Laura Jeacock ◽  
Nicola Baker ◽  
Natalie Wiedemar ◽  
Pascal Mäser ◽  
David Horn

2015 ◽  
Vol 14 (7) ◽  
pp. 719-725 ◽  
Author(s):  
Jongmin Lee ◽  
David E. Levin

ABSTRACT The plasma membrane aquaglyceroporin Fps1 is responsible for glycerol transport in yeast in response to changes in extracellular osmolarity. Fps1 functions as a homotetramer, and control of its channel activity in response to hyperosmotic shock involves a redundant pair of fungus-specific regulators, Rgc1 and Rgc2 (regulators of the glycerol channel), and the mitogen-activatd protein kinase (MAPK) Hog1 (high-osmolarity glycerol response). Rgc1 and Rgc2 maintain Fps1 in an open-channel state by binding to its C-terminal cytoplasmic domain. Phosphorylation of Rgc1 and Rgc2 by Hog1 induces their eviction from Fps1 and consequent channel closure. In the absence of Fps1 channel function, cells experience chronic cell wall stress, which may be exploited for antifungal drug development. We show here that Rgc1 and Rgc2 form homodimers and heterodimers with each other and that dimer formation of Rgc2 is mediated by its N-terminal domain. Mutations that prevent Rgc2 dimerization block its ability to open Fps1. Therefore, the Rgc-Rgc dimer interface might be an attractive drug target.


Sign in / Sign up

Export Citation Format

Share Document