blue radiation
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 14 (2) ◽  
pp. 188-198 ◽  
Author(s):  
Gunnar Brehm ◽  
Julia Niermann ◽  
Luisa Maria Jaimes Nino ◽  
David Enseling ◽  
Thomas Jüstel ◽  
...  
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Evgenii A. Evropeitsev ◽  
Dmitrii R. Kazanov ◽  
Yoann Robin ◽  
Alexander N. Smirnov ◽  
Ilya A. Eliseyev ◽  
...  

Abstract Core–shell nanorods (NRs) with InGaN/GaN quantum wells (QWs) are promising for monolithic white light-emitting diodes and multi-color displays. Such applications, however, are still a challenge because intensity of the red band is too weak compared with blue and green. To clarify this problem, we measured photoluminescence of different NRs, depending on power and temperature, as well as with time resolution. These studies have shown that dominant emission bands come from nonpolar and semipolar QWs, while a broad yellow-red band arises mainly from defects in the GaN core. An emission from polar QWs located at the NR tip is indistinguishable against the background of defect-related luminescence. Our calculations of electromagnetic field distribution inside the NRs show a low density of photon states at the tip, which additionally suppresses the radiation of polar QWs. We propose placing polar QWs inside a cylindrical part of the core, where the density of photon states is higher and the well area is much larger. Such a hybrid design, in which the excess of blue radiation from shell QWs is converted to red radiation in core wells, can help solve the urgent problem of red light for many applications of NRs.


2020 ◽  
Vol 145 (3) ◽  
pp. 152-161
Author(s):  
Joshua K. Craver ◽  
Krishna S. Nemali ◽  
Roberto G. Lopez

Indoor production of bedding plant seedlings using sole-source radiation may present value in increasing uniformity and consistency compared with greenhouse production. However, information on physiological acclimation related to growth and photosynthesis in seedlings exposed to high-intensity blue radiation and elevated CO2 is limited. Seedlings of petunia (Petunia ×hybrida) ‘Dreams Midnight’ were exposed to red (peak = 660 nm):blue (peak = 451 nm) radiation ratios of 50:50 (R50:B50) or 90:10 (R90:B10) and radiation intensities of 150 or 300 µmol·m−2·s–1 under two CO2 regimes of 450 or 900 µmol·mol–1. Shoot dry mass (SDM), leaf area index (LAI), internode length, and whole-plant photosynthesis and light-use efficiency (LUE) responses to increasing radiation intensity were measured. In addition, leaf photosynthetic rate (A) was measured at ambient and supra-optimal CO2 concentrations for plants grown under 450 µmol·mol–1 CO2. Our results indicated growth (based on SDM, LAI, and internode length) was lowered for seedlings produced under R50:B50 compared with R90:B10. However, we observed an increase in whole-plant light-saturated photosynthesis (Ag,max) and whole-plant light saturation point (LSP) under R50:B50 compared with R90:B10. In addition, we observed lower LUE below and higher LUE above a radiation intensity of 500 µmol·m−2·s–1 in seedlings grown under R50:B50 compared with R90:B10. Based on our results, seedling growth was lowered under a high proportion of blue radiation mainly due to lower radiation interception (due to lower LAI and shorter internode length) and LUE of intercepted radiation at the intensities used. Higher Ag,max and LSP in R50:B50 compared with R90:B10 under higher radiation intensities was likely in part due to higher LUE. Further investigation revealed A was higher at both optimal and supra-optimal CO2 concentrations under R50:B50 compared with R90:B10, indicating a lack of stomatal effects of a higher proportion of blue radiation on carboxylation and LUE. We hypothesize that higher LUE in R50:B50 compared with R90:B10 under higher radiation intensities is due to improved photochemical quenching from increased biosynthesis of carotenoids and anthocyanins. The results from our study generated fundamental information on growth and photosynthetic responses to excess blue radiation, data that can be further used in optimizing plant production in controlled environments.


In this, a series of iso-structural Y2O2S (RE3+ = Dy3+ , Eu3+ and Tb3+) phosphors were synthesized by high temperature solid state reaction method. All the phosphors exhibit strong line and broad excitation in the near ultraviolet (n-UV) region. Bright color emission in blue, green and red color region of electromagnetic hue cycle was noticed. The concentration of activator doped was optimized from the photoluminescence (PL) study. The quenching in luminescence intensity after particular concentration of dopant is discussed here. Y2O2S phosphor doped with Dy3+displays useful blue and yellow emission bands at 487nm and 574nm, when stimulated by 388nm excitation wavelength. Y2O2S:Eu3+ phosphor displays an orange and red emission at 594nm and 620nm, when stimulated at 396 nm. Whereas, Y2O2S:Tb3+ phosphor displays weak blue radiation in the range 485nm and strong green radiation at 545nm, when stimulated at 305 nm. The excitation spectra used for the Y2O2S:RE3+ (RE3+ = Dy3+ , Eu3+ and Tb3+) phosphor is in the near ultraviolet (n-UV) region spanning from 300 nm to 400 nm, which is a peculiarity of near ultraviolet stimulated LED. The outcome of the RE3+ (RE3+= Dy3+ , Eu3+and Tb3+) absorption on the luminescence properties of Y2O2S:RE3+ phosphors was also studied.


2020 ◽  
Author(s):  
Neha Rai ◽  
Andrew O’Hara ◽  
Daniel Farkas ◽  
Omid Safronov ◽  
Khuanpiroon Ratanasopa ◽  
...  

AbstractThe photoreceptors UV RESISTANCE LOCUS 8 (UVR8) and CRYPTOCHROMES 1 and 2 (CRYs) play major roles in the perception of UV-B (280–315 nm) and UV-A/blue radiation (315–500 nm), respectively. However, it is poorly understood how they function in sunlight. The roles of UVR8 and CRYs were assessed in a factorial experiment with Arabidopsis thaliana wild-type and photoreceptor mutants exposed to sunlight for 6 h or 12 h under five types of filters with cut-offs in UV and blue-light regions. Transcriptome-wide responses triggered by UV-B and UV-A wavelengths shorter than 350 nm (UV-Asw) required UVR8 whereas those induced by blue and UV-A wavelengths longer than 350 nm (UV-Alw) required CRYs. UVR8 modulated gene expression in response to blue light while lack of CRYs drastically enhanced gene expression in response to UV-B and UV-Asw. These results agree with our estimates of photons absorbed by these photoreceptors in sunlight and with in vitro monomerization of UVR8 by wavelengths up to 335 nm. Motif enrichment analysis predicted complex signaling downstream of UVR8 and CRYs. Our results highlight that it is important to use UV waveband definitions specific to plants’ photomorphogenesis as is routinely done in the visible region.


Sign in / Sign up

Export Citation Format

Share Document