growth anomalies
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 24)

H-INDEX

19
(FIVE YEARS 3)

Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 32
Author(s):  
Rocktim Ramen Das ◽  
Haruka Wada ◽  
Giovanni Diego Masucci ◽  
Tanya Singh ◽  
Parviz Tavakoli-Kolour ◽  
...  

The Indo-Pacific zooxanthellate scleractinian coral genus Montipora is the host of many coral diseases. Among these are cyanobacterial Black Band Disease (BBD) and Skeletal Growth Anomalies (GAs), but in general data on both diseases are lacking from many regions of the Indo-Pacific, including from Okinawa, southern Japan. In this study, we collected annual prevalence data of Black Band Disease (BBD) and Skeletal Growth Anomalies (GAs) affecting the encrusting form of genus Montipora within the shallow reefs of the subtropical Sesoko Island (off the central west coast of Okinawajima Island) from summer to autumn for four years (2017 to 2020). In 2020 Montipora percent coverage and colony count were also assessed. Generalized Linear Models (GLM) were used to understand the spatial and temporal variation of both BBD and GAs in the nearshore (NE) and reef edge (RE) sites, which revealed higher probability of BBD occurrence in RE sites. BBD prevalence was significantly higher in 2017 in some sites than all other years with site S12 having significant higher probability during all four surveyed years. In terms of GAs, certain sites in 2020 had higher probability of occurrence than during the other years. While the general trend of GAs increased from 2017 to 2020, it was observed to be non-fatal to colonies. In both diseases, the interaction between sites and years was significant. We also observed certain BBD-infected colonies escaping complete mortality. BBD progression rates were monitored in 2020 at site S4, and progression was related to seawater temperatures and was suppressed during periods of heavy rain and large strong typhoons. Our results suggest that higher BBD progression rates are linked with high sea water temperatures (SST > bleaching threshold SST) and higher light levels (> 1400 µmol m−2 s−1), indicating the need for further controlled laboratory experiments. The current research will help form the basis for continued future research into these diseases and their causes in Okinawa and the Indo-Pacific Ocean.


2021 ◽  
Author(s):  
◽  
Gareth John Williams

<p>Coral diseases are a major threat to coral reef health and functioning worldwide. Little is known about how coral disease prevalence relates to multiple interacting changes in host densities, abiotic stressors, and levels of human impact. In particular, almost nothing is known about coral disease dynamics under changing abiotic conditions in the absence of direct anthropogenic stressors. Understanding how disease dynamics change relative to shifts in environmental conditions is crucial for the successful management and future survival of coral reefs. With the use of existing and novel field data and statistical modeling I examined the associations (abiotic and biotic) of multiple coral disease states across a variety of spatial scales encompassing a wide range of environmental conditions. Biomedical techniques were then used to relate these environmental associations to potential disease etiology. Study sites included areas with high levels of anthropogenic impact (e.g. Oahu, main Hawaiian Islands); to extremely remote quasi-pristine reefs removed from direct human influence (e.g. Palmyra Atoll National Wildlife Refuge). Over small spatial scales (100s m) at a marine reserve in the main Hawaiian Islands I modelled the spatial patterns of four coral diseases (Porites growth anomalies, Porites tissue loss, Porites trematodiasis and Montipora white syndrome). While Porites tissue loss and Montipora white syndrome were positively associated with poor environmental conditions (poor water quality, low coral cover), Porites growth anomalies and Porites trematodiasis were more prevalent in areas considered to be of superior quality (clearer water, increased host abundance, higher numbers of fish). At Palmyra Atoll, fatal tissue loss diseases were largely absent and although coral growth anomalies were present their prevalence was extremely low. Patterns of growth anomaly prevalence at Palmyra were positively associated with host abundance across four coral genera (Acropora, Astreopora, Montipora and Porites) and generally negatively associated with algal cover. Growth anomalies, although progressive and detrimental to the hosts, were most prevalent in the "healthiest" regions (the highest coral cover regions) of Palmyra. I hypothesised that differences seen in the types and prevalence of coral diseases between heavily populated parts of Hawaii and remote uninhabited locations such as Palmyra Atoll, could be a result of differing levels of either direct (e.g. pollution) or indirect (e.g. pollution leading to loss of key hosts) human stressors, in addition to natural changes in the environment. To begin disentangling the confounding effects of natural variability and human stressors on coral disease prevalence patterns I modelled two diseases (Acropora and Porites growth anomalies) across hundreds of sites throughout the Indo-Pacific Ocean (1000s km). Predictors included host densities, human population numbers, frequency of sea surface temperature anomalies, and input of ultra-violet radiation. Porites growth anomaly prevalence was positively associated with human population density (and to a lesser extent host density), while the prevalence of Acropora growth anomalies was strongly host density dependent. The positive association between the prevalence of Porites growth anomalies and human density suggests the presence and prevalence of the disease are related, directly or indirectly, to some environmental co-factor associated with increased human density at regional spatial scales. Although this association has been widely posited, this is one of the first wide scale studies unambiguously linking a coral disease with human population size. In summary, the types of coral diseases observed, their prevalence, and spatial patterns of distribution within reef systems are the result of multiple abiotic and biotic factors and stressors interacting, in some cases synergistically. Statistical modelling, in conjunction with biomedical techniques and field observations, proved essential to the understanding of coral disease ecology within single reefs and atolls to patterns across entire oceans.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0246854
Author(s):  
Greta Smith Aeby ◽  
Amanda Shore ◽  
Thor Jensen ◽  
Maren Ziegler ◽  
Thierry Work ◽  
...  

Coral disease is a growing problem for coral reefs globally and diseases have been linked to thermal stress, excess nutrients, overfishing and other human impacts. The Red Sea is a unique environment for corals with a strong environmental gradient characterized by temperature extremes and high salinities, but minimal terrestrial runoff or riverine input and their associated pollution. Yet, relatively little is known about coral diseases in this region. Disease surveys were conducted at 22 reefs within three regions (Yanbu, Thuwal, Al Lith) in the central Red Sea along the Saudi Arabian coast. Surveys occurred in October 2015, which coincided with a hyperthermal-induced bleaching event. Our objectives were to 1) document types, prevalence, and distribution of coral diseases in a region with minimal terrestrial input, 2) compare regional differences in diseases and bleaching along a latitudinal gradient of environmental conditions, and 3) use histopathology to characterize disease lesions at the cellular level. Coral reefs of the central Red Sea had a widespread but a surprisingly low prevalence of disease (<0.5%), based on the examination of >75,750 colonies. Twenty diseases were recorded affecting 16 coral taxa and included black band disease, white syndromes, endolithic hypermycosis, skeletal eroding band, growth anomalies and focal bleached patches. The three most common diseases were Acropora white syndrome (59.1% of the survey sites), Porites growth anomalies (40.9%), and Porites white syndrome (31.8%). Sixteen out of 30 coral genera within transects had lesions and Acropora, Millepora and Lobophyllia were the most commonly affected. Cell-associated microbial aggregates were found in four coral genera including a first report in Stylophora. Differences in disease prevalence, coral cover, amount of heat stress as measured by degree heating weeks (DHW) and extent of bleaching was evident among sites. Disease prevalence was not explained by coral cover or DHW, and a negative relationship between coral bleaching and disease prevalence was found. The northern-most sites off the coast of Yanbu had the highest average disease prevalence and highest average DHW values but no bleaching. Our study provides a foundation and baseline data for coral disease prevalence in the central Red Sea, which is projected to increase as a consequence of increased frequency and severity of ocean warming.


Coral Reefs ◽  
2021 ◽  
Author(s):  
Erik R. Andersson ◽  
Rusty D. Day ◽  
Thierry M. Work ◽  
Paul E. Anderson ◽  
Cheryl M. Woodley ◽  
...  

2021 ◽  
pp. 030098582110206
Author(s):  
Louis Pierre Rich ◽  
Charlie Arnot ◽  
Michelle M. Dennis

Growth anomalies (GAs) are a morphologically diverse and poorly understood group of lesions affecting corals. The aim of this study was to describe the prevalence and morphology of GAs affecting the faviid corals Diploria labyrinthiformis, Pseudodiploria strigosa, Psudodiploria clivosa, and Colpophyillia natans on St. Kitts. Three gross morphological variants of GAs (exophytic, nodular, and ruminate) were equally prevalent, together affecting 7.8% of corals surveyed across 5 reefs. Prevalence varied by reef and coral species, being highest in C. natans (35.7%). Median colony diameter was larger in corals with GAs relative to those without (Mann-Whitney U test, P < .001). Histopathological examination of exophytic GAs consistently showed corallite and polyp gigantism ( n = 7), characterized by polyp enlargement and retained microanatomical structures. In contrast, nodular GAs ( n = 9) were consistently hyperplasia of the basal body wall with skeletal dystrophy, composed of micronodular skeletal deposits with abundant hyaline lamellae, bordered by calicoblastic epithelial hyperplasia, interspersed with distorted gastrovascular canals and islands of mesoglea. Endolithic organisms, particularly fungi and algae, were common among GA and apparently healthy biopsies. While pathogenesis of these lesions remains uncertain, a neoplastic basis for GAs on Caribbean faviids could not be established using diagnostic criteria conventionally applied to tumors of vertebrate taxa, in line with other recent observations of coral GAs.


Materialia ◽  
2021 ◽  
pp. 101087
Author(s):  
N.J. Sutemire ◽  
M.V. Rix ◽  
R.P. Durman ◽  
M.A. Baker ◽  
M.J. Whiting

2021 ◽  
Vol 125 (8) ◽  
pp. 4909-4916
Author(s):  
Avulu Vinod Kumar ◽  
Mari Annadhasan ◽  
Vuppu Vinay Pradeep ◽  
Mane Jyothi ◽  
K. V. Jovan Jose ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Greta Smith Aeby ◽  
Amanda Shore ◽  
Thor Jensen ◽  
Maren Ziegler ◽  
Thierry Work ◽  
...  

AbstractThe Red Sea is a unique environment for corals with a strong environmental gradient characterized by temperature extremes and high salinities, but minimal terrestrial runoff or riverine input and their associated pollution. Disease surveys were conducted along 22 reefs in the central Red Sea along the Saudi Arabian coast in October 2015, which coincided with a bleaching event. Our objectives were to 1) document types, prevalence, and distribution of coral diseases in a region with minimal terrestrial input, 2) compare regional differences in diseases and bleaching along a latitudinal gradient of environmental conditions, and 3) use histopathology to characterize disease lesions at the cellular level. Coral reefs of the central Red Sea had a widespread but a surprisingly low prevalence of disease (<0.5%), based on the examination of >75,750 colonies. Twenty diseases were recorded affecting 16 coral taxa and included black band disease, white syndromes, endolithic hypermycosis, skeletal eroding band, growth anomalies and focal bleached patches. The three most common diseases were Acropora white syndrome (59.1% of the survey sites), Porites growth anomalies (40.9%), and Porites white syndrome (31.8%). Over half of the coral genera within transects had lesions and corals from the genera Acropora, Millepora and Lobophyllia were the most commonly affected. Cell-associated microbial aggregates were found in four coral genera resembling patterns found in the Indo-Pacific. Differences in disease prevalence, coral cover, amount of heat stress as measured by degree heating weeks (DHW) and extent of bleaching was evident among sites. Disease prevalence was not explained by coral cover or DHW, and a negative relationship between coral bleaching and disease prevalence was found. The northern-most sites off the coast of Yanbu had the highest average DHW values but absence of bleaching and the highest average disease prevalence was recorded. Our study provides a foundation and baseline data for coral disease prevalence in the Red Sea, which is projected to increase as a consequence of increased frequency and severity of ocean warming.


2021 ◽  
Vol 22 (3) ◽  
pp. 1315
Author(s):  
Manuel Weber ◽  
Falk Wehrhan ◽  
James Deschner ◽  
Janina Sander ◽  
Jutta Ries ◽  
...  

Maxillofacial hard tissues have several differences compared to bones of other localizations of the human body. These could be due to the different embryological development of the jaw bones compared to the extracranial skeleton. In particular, the immigration of neuroectodermally differentiated cells of the cranial neural crest (CNC) plays an important role. These cells differ from the mesenchymal structures of the extracranial skeleton. In the ontogenesis of the jaw bones, the development via the intermediate stage of the pharyngeal arches is another special developmental feature. The aim of this review was to illustrate how the development of maxillofacial hard tissues occurs via the cranial neural crest and pharyngeal arches, and what significance this could have for relevant pathologies in maxillofacial surgery, dentistry and orthodontic therapy. The pathogenesis of various growth anomalies and certain syndromes will also be discussed.


Sign in / Sign up

Export Citation Format

Share Document