scholarly journals Adaptation to simultaneous warming and acidification carries a thermal tolerance cost in a marine copepod

2021 ◽  
Vol 17 (7) ◽  
pp. 20210071
Author(s):  
James A. deMayo ◽  
Amanda Girod ◽  
Matthew C. Sasaki ◽  
Hans G. Dam

The ocean is undergoing warming and acidification. Thermal tolerance is affected both by evolutionary adaptation and developmental plasticity. Yet, thermal tolerance in animals adapted to simultaneous warming and acidification is unknown. We experimentally evolved the ubiquitous copepod Acartia tonsa to future combined ocean warming and acidification conditions (OWA approx. 22°C, 2000 µatm CO 2 ) and then compared its thermal tolerance relative to ambient conditions (AM approx. 18°C, 400 µatm CO 2 ). The OWA and AM treatments were reciprocally transplanted after 65 generations to assess effects of developmental conditions on thermal tolerance and potential costs of adaptation. Treatments transplanted from OWA to AM conditions were assessed at the F1 and F9 generations following transplant. Adaptation to warming and acidification, paradoxically, reduces both thermal tolerance and phenotypic plasticity. These costs of adaptation to combined warming and acidification may limit future population resilience.

2017 ◽  
Vol 607-608 ◽  
pp. 87-94 ◽  
Author(s):  
Kamille Elvstrøm Krause ◽  
Khuong V. Dinh ◽  
Torkel Gissel Nielsen

2010 ◽  
Vol 277 (1688) ◽  
pp. 1659-1665 ◽  
Author(s):  
David A. Miller

Developmental plasticity can be integral in adapting organisms to the environment experienced during growth. Adaptive plastic responses may be especially important in prioritizing development in response to stress during ontogeny. To evaluate this, I examined how developmental conditions for mourning doves related to early growth and how this affected fledging age, an important life-history transition for birds. The life history of mourning doves is consistent with strong selective pressure to minimize fledging age. Therefore, I predicted that in the face of nutritional stress associated with experimental brood-size increases, young would prioritize growth to structures that promote early fledging to reduce the effect of slowed overall growth on fledging age. Increasing brood size slowed overall structural growth of nestlings and affected the relative allocation of growth among different body parts. Total wing area was the best predictor of fledging age and individuals from larger broods had larger wings relative to overall body size. Although nestlings from larger broods fledged at later ages owing to slower overall growth, prioritization of wing growth reduced this effect by an estimated 1.6 days relative to the delay if plasticity among body parts had not occurred. This was an 11 per cent reduction in the predicted developmental time it took to reach this important life-history transition. Results demonstrate that preferential allocation to wing growth can affect the timing of this life-history transition and that morphological plasticity during development can have adaptive near-term effects during avian development.


2014 ◽  
Vol 281 (1785) ◽  
pp. 20140311 ◽  
Author(s):  
Tim Burton ◽  
Neil B. Metcalfe

The consequences of early developmental conditions for performance in later life are now subjected to convergent interest from many different biological sub-disciplines. However, striking data, largely from the biomedical literature, show that environmental effects experienced even before conception can be transmissible to subsequent generations. Here, we review the growing evidence from natural systems for these cross-generational effects of early life conditions, showing that they can be generated by diverse environmental stressors, affect offspring in many ways and can be transmitted directly or indirectly by both parental lines for several generations. In doing so, we emphasize why early life might be so sensitive to the transmission of environmentally induced effects across generations. We also summarize recent theoretical advancements within the field of developmental plasticity, and discuss how parents might assemble different ‘internal’ and ‘external’ cues, even from the earliest stages of life, to instruct their investment decisions in offspring. In doing so, we provide a preliminary framework within the context of adaptive plasticity for understanding inter-generational phenomena that arise from early life conditions.


2020 ◽  
pp. jeb.237297
Author(s):  
Dorsa Elmi ◽  
Donald R. Webster ◽  
David M. Fields

This study quantifies the behavioral response of a marine copepod (Acartia tonsa) to individual, small-scale, dissipative vortices that are ubiquitous in turbulence. Vortex structures were created in the laboratory using a physical model of a Burgers vortex with characteristics corresponding to typical dissipative vortices that copepods are likely to encounter in the turbulent cascade. To examine the directional response of copepods, vortices were generated with the vortex axis aligned in either horizontal or vertical directions. Tomographic particle image velocimetry was used to measure the volumetric velocity field of the vortex. Three-dimensional copepod trajectories were digitally reconstructed and overlaid on the vortex flow field to quantify A. tonsa’s swimming kinematics relative to the velocity field and to provide insight to the copepod behavioral response to hydrodynamic cues. The data show significant changes in swimming kinematics and an increase in relative swimming velocity and hop frequency with increasing vortex strength. Furthermore, in moderate-to-strong vortices, A. tonsa moved at elevated speed in the same direction as the swirling flow and followed spiral trajectories around the vortex, which would retain the copepod within the feature and increase encounter rates with other similarly behaving Acartia. While changes in swimming kinematics depended on vortex intensity, orientation of the vortex axis showed minimal significant effect. Hop and escape jump densities were largest in the vortex core, which is spatially coincident with the peak in vorticity suggesting that vorticity is the hydrodynamic cue that evokes these behaviors.


Sign in / Sign up

Export Citation Format

Share Document