Structural Parameter Optimization for Large Spacing Sublevel Caving in Chengchao Iron Mine

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1619
Author(s):  
Yuye Tan ◽  
Mochuan Guo ◽  
Yimin Hao ◽  
Chi Zhang ◽  
Weidong Song

Non-pillar sublevel caving is beginning to use large structural parameters in China. Appropriate structural parameters can effectively control the loss and dilution of stope and improve ore drawing efficiency. In this study, taking Chengchao Iron Mine as the engineering background, a theoretical calculation, a numerical simulation, and physical similarity experiments were combined to optimize sublevel height, production drift spacing, and drawing space. The optimal structural parameter range, based on the ellipsoid ore drawing theory, was obtained as a theoretical reference for subsequent studies. A “two-step” strategy was used, in which PFC2D software (Itasca Consulting Group, Minneapolis, MN, USA) was used to numerically simulate 20 groups of different sublevel heights and production drift spacing parameters were used to determine the appropriate sublevel height and production drift spacing for the project. Subsequently, the optimization of the ore drawing space was studied using PFC3D (Itasca Consulting Group, Minneapolis, MN, USA) particle unit software, numerical simulation analysis, and similar physical experiments. The results showed that safe and efficient mining can be achieved when the structural parameters of the stope are 17.5 m sublevel height, 20 m production drift spacing, and 6 m drawing space. The findings of this study can further the goal of green and efficient mining, and provide a theoretical reference for the popularization and application of pillarless sublevel caving with large structural parameters at home and abroad. It is an effective measure for the green mining of caving mines.

2011 ◽  
Vol 199-200 ◽  
pp. 1537-1540
Author(s):  
Pin Chen ◽  
Zhao Hua Wu ◽  
Sheng Zhang ◽  
Tang Wen Bi ◽  
Qing Song Xiong

In the thermal design of embedded high-power chips microwave modules, structural parameter is one of the main reasons affect the thermal resistance, thus influences the reliability of the modules, the structural parameter optimized of the microwave components was studied in this paper. The goal of this work is to decrease the temperature and achieves the best structural dimensions. Using the ANSYS software build the EPCM module, through simulation analysis, Linear regression equation be fitted by RSM, which concerning the module maximum temperature with board area, substrate thickness, molybdenum thickness and encapsulation thickness. Based on genetic algorithms, structural parameter optimization algorithm of thermal model was proposed and the optimization structural parameter of embedded high-power chips microwave modules was achieved by corresponding optimization program. Based on ANSYS work, before optimization the model of maximum temperature is 86.717°C, the maximum temperature module of the optimization structural parameter is lower 1.28°C than before, so the thermal resistance decreased. The result show that the maximum temperature module of the optimization structural parameter is in good accord with the FEA results. It turns out that the RSM –GA approach proposed in this work can be effective and robust in providing structural parameter optimization in EPCM.


2012 ◽  
Vol 499 ◽  
pp. 120-125 ◽  
Author(s):  
Zhi Peng Tang ◽  
Ying Xue Yao ◽  
Liang Zhou ◽  
Q. Yao

In order to enhance the efficiency of the Savonius rotor, this paper designs a new type of Savonius rotor with a rectifier. By using Computational Fluid Dynamics software to simulate and optimize the various parameters which affect the efficiency of the rotor. The sliding mesh method is applied here. The Cp-λ curves of wind turbine with different structural parameters are obtained after numerical simulation of flow field. On this basis, this paper gets the optimal structural parameters. And the results indicated that this new type of Savonius rotor has great improvement of efficiency compared with the traditional Savonius-type rotor.


2011 ◽  
Vol 415-417 ◽  
pp. 1516-1520
Author(s):  
Xue Ping Wang ◽  
Zhen Wei Zhang

This paper mainly focuses on the numerical simulation of the gas flow field of cyclone separator. The authors took advanced of RSM turbulence model of software Fluent to simulate the gas field. The regulations among structure parameter of exhaust pipe, pressure lose and separation efficiency can be obtained according to the numerical simulation results under the situation of changing the structural parameters. The conclusion of this paper can put forward the theoretical reference for the structure optimization of cyclone separation.


2013 ◽  
Vol 711 ◽  
pp. 209-213 ◽  
Author(s):  
Nai Fei Ren ◽  
Lei Jia ◽  
Dian Wang

Using APDL programming language, an appropriate finite element model is created and the moving cyclic loads of Gauss heat source are realized. From the detailed qualitative analysis of the results, the variety laws of temperature field in indirect SLS are obtained. Plot results at different moments, temperature cyclic curves of key points and the curves of depth of fusion and width of fusion on the set paths, are of important guiding significance for subsequent physical experiments.


2011 ◽  
Vol 361-363 ◽  
pp. 120-124
Author(s):  
Qi Feng Guo ◽  
Fen Hua Ren

According to the mining conditions and equipment level of Xingshan iron mine, optimization research on the stope structural parameters of sublevel caving was made, and finally adopted the structure parameters with 15m sublevel height and 20m drift interval. In order to find out the rational independent advance of ore breaking under 15m×20m structural parameters, theoretical arithmetic and industrial tests were carried out. The tests show that the rational independent advance of ore breaking drift interval should be 3.4m, and the optimized structural parameters of 15m×20m×3.4m has excellent effects on reducing mining cost and improving mining recovery rate.


Author(s):  
Zhang Bao ◽  
Wang Xiaoping ◽  
Ge Xinfang

To reduce negative stiffness structure’s stiffness non-linearity, enhance its stability during entire working displacement range, and expand its allowable working displacement, the optimal design of negative stiffness structure based on magnetic repulsion is proposed, and its structural parameters are also provided. The new negative stiffness structure’s model is established to determine the structural design parameters. According to the change of the new negative stiffness structure’s stiffness curve, we select the structural parameter to meet the design requirements. In order to verify the effectiveness of the proposed negative stiffness structure, we carried out simulation analysis, and the results show that the optimized negative stiffness structure’s stiffness non-linearity is greatly reduced in a relatively longer displacement, and its stiffness stability is promoted substantially compared with the simple triple-magnet negative stiffness structure.


2021 ◽  
Vol 2045 (1) ◽  
pp. 012011
Author(s):  
L F Han ◽  
T J Liu ◽  
L Li ◽  
D Q Liu

Abstract Nowadays, CFD technology has become the third tool to study hydrodynamics problems after theoretical analysis and experimental research, especially in dealing with and solving complex engineering problems such as supersonic. In this paper, using the method of control variables, the system studied a type air ejector structure parameters within a certain range changes affect the performance of the work by means of FLUENT, at the same time, the optimal combination of the structural parameters are given, then three dimensional numerical simulation of the optimal combination model, and the simulation value and experiment value has carried on the contrast and analysis, Compared with the two-dimensional and axisymmetric model, Three-dimensional calculation model is more reliable and reasonable.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Mingzhi Sun ◽  
Fengyu Ren ◽  
Hangxing Ding

Based on the engineering background of the Meishan iron mine with sublevel caving (SLC) method, in this work, we adopted the method for identifying the shape of mined orebody (the original location in blasted slice), which analyzed and determined reasonable stope structure parameters. In the field test, the markers were arranged in the blasted slice, the mined orebody was measured by in situ tests, and reliable data were achieved. The shape of the mined orebody was obtained through this test when the width of drift was 6 m. The mined orebody’s shape was compared with the shape of the isolated extraction zone (IEZ), and the difference increased with increasing height. When the stope structural parameters were determined by the mined orebody, the larger the sublevel height was, the smaller the error was, which was compared with the method using ellipsoid arrangement theory to determine the stope structural parameters. Finally, the reasonable stope structure parameters were optimized. The sublevel height was 22 m, and the drift spacing was 20 m.


2010 ◽  
Vol 439-440 ◽  
pp. 875-879
Author(s):  
Fu Zhao ◽  
Ping Wang ◽  
Yan Jue Gong ◽  
Li Zhang ◽  
Chun Ling Meng

This paper focuses on the structural optimization of chemical sensor support for food safety detection. The mechanical characteristic of chemical sensor support is influenced greatly by its structural parameters. Aiming at improving dynamic stiffness of the support, the modal analysis is implemented with the dynamic theory and the finite element analysis. And a group of rational structure parameters are determined through the optimum calculation. The validity simulation of the optimization is verified by the analyses of the random vibration and harmonic response. The results demonstrate that the performance of the support of the chemical sensor applied for the food detection is enhanced greatly by the presented optimization method here.


2017 ◽  
Vol 17 (2) ◽  
pp. 53-60 ◽  
Author(s):  
Ondřej Zavila ◽  
Tomáš Blejchař

Abstract The article focuses on the analysis of the possibilities to model motion and dispersion of plumes of different density gas pollutants in lowspeed wind tunnels based on the application of physical similarity criteria, in this case the Froude number. The analysis of the physical nature of the modeled process by the Froude number is focused on the influence of air flow velocity, gas pollutant density and model scale. This gives an idea of limitations for this type of physical experiments in relation to the modeled real phenomena. The resulting statements and logical links are exemplified by a CFD numerical simulation of a given task calculated in ANSYS Fluent software.


Sign in / Sign up

Export Citation Format

Share Document