scholarly journals PHOTOGRAMMETRY, HBIM, AND DAMAGE ANALYSIS OF COSMIC RAYS PAVILION FOR RAISING AWARENESS TO ITS CULTURAL HERITAGE

Author(s):  
S. Rajabzadeh ◽  
M. Esponda ◽  
L. Cordero Espinosa

Abstract. This paper presents a comparative approach between a digital documentation workflow using contemporary tools versus a traditional documentation technique for Felix Candela's hyperbolic paraboloid (hypar) modern heritage building: Cosmic Rays Pavilion. This documentation was undertaken to better understand the building’s structure, its evolution, and to assess the performance of this concrete structure for future seismic and damage analysis. Furthermore, the paper discusses the challenges related to producing a Heritage Building Information Model (HBIM) of this building using point cloud data in Autodesk’s Revit BIM-authoring software. This project states the importance of a parallel study between the traditional and the contemporary documentation methods; which led to discoveries about the current state of the extrados in the hypar after several earthquakes. Upon analyzing the HBIM and comparing it to the historical drawings, a gap was discovered between the moisture barrier membrane and the concrete shell. Visualizing the building in 3D provides a deeper and more accurate understanding of the current state of this pavilion and is one of many advantages of using digital technologies. The insights provided by digital documentation techniques and analyzing the historical images of the pavilion showed that the curvature of the pavilion has been modified over time. The results imply two hypotheses. First, the curvature profile has been altered due to earthquakes. Second, the modification is due to improper maintenance of the pavilion, namely, multiple additions of the membrane layers. This could not have been detected by solely relying on traditional documentation techniques.

2020 ◽  
Vol 12 (11) ◽  
pp. 1800 ◽  
Author(s):  
Maarten Bassier ◽  
Maarten Vergauwen

The processing of remote sensing measurements to Building Information Modeling (BIM) is a popular subject in current literature. An important step in the process is the enrichment of the geometry with the topology of the wall observations to create a logical model. However, this remains an unsolved task as methods struggle to deal with the noise, incompleteness and the complexity of point cloud data of building scenes. Current methods impose severe abstractions such as Manhattan-world assumptions and single-story procedures to overcome these obstacles, but as a result, a general data processing approach is still missing. In this paper, we propose a method that solves these shortcomings and creates a logical BIM model in an unsupervised manner. More specifically, we propose a connection evaluation framework that takes as input a set of preprocessed point clouds of a building’s wall observations and compute the best fit topology between them. We transcend the current state of the art by processing point clouds of both straight, curved and polyline-based walls. Also, we consider multiple connection types in a novel reasoning framework that decides which operations are best fit to reconstruct the topology of the walls. The geometry and topology produced by our method is directly usable by BIM processes as it is structured conform the IFC data structure. The experimental results conducted on the Stanford 2D-3D-Semantics dataset (2D-3D-S) show that the proposed method is a promising framework to reconstruct complex multi-story wall elements in an unsupervised manner.


Author(s):  
S. Vincke ◽  
R. de Lima Hernandez ◽  
M. Bassier ◽  
M. Vergauwen

<p><strong>Abstract.</strong> By adopting Building Information Modelling (BIM) software, the architecture, engineering and construction (AEC) industry shifted from a two-dimensional approach to a three-dimensional one in the design phase of a building. However, a similar three-dimensional approach for the visualisation of the current state of the construction works is lacking. Currently, progress reports typically include numerous pictures of the construction site or elements, alongside the appropriate parts of the 3D as-design BIM model. If a proper transition to a <i>3D design versus 3D current state</i> were achieved, the evolved type of reports would become more comprehensible, resulting in more well-informed decision-making. This requires a single, unique software platform that is able to import, process, analyse and visualise both the as-design BIM model as well as the recorded data of the current construction state. At present however, the visualisation and interpretation of the different datasets alone requires already multiple software packages.</p><p>As a partial solution this work presents a platform to easily visualise and interpret various data sources such as point clouds, meshes and BIM models and analysis results. Recent advances of gaming engines focus on and allow for an excellent visualisation of mesh data. Therefore all of the aforementioned data sources are converted into mesh objects upon importing. Moreover, gaming engines provide the necessary tools to traverse the scene intuitively allowing construction site managers and other stakeholders to gain a more complete and better oversight of the construction project. Furthermore, these engines also provide the possibility to take the immersion to the next level: incorporating the 3D entities into a Virtual Reality (VR) environment makes the visualised data and the executed analyses even more comprehensible.</p><p>By means of a case study, the potential of the presented approach is showcased. The real-world construction site recordings, models and analyses are visualised and implemented in VR using the Unity gaming engine.</p>


Author(s):  
H. Macher ◽  
L. Chow ◽  
S. Fai

<p><strong>Abstract.</strong> The use of remote sensors to acquire metric information for building information modelling (BIM) of heritage buildings is now common. Problematically, the creation of models from that information is still largely a manual and non-quantifiable process. As a result, a key aspect of the scan-to-BIM process is verification of the accuracy of the model in relation to the metric information. The most common method to check a model element constructed from a point cloud seems to be the analysis of deviations between this element and the corresponding point cloud (Anil et al., 2013; Tang et al., 2011). It is comprised of three main steps: the computation, the visualisation and the analysis of deviations. The verification process is particularly onerous for large-scale buildings where it is necessary to ensure that all elements of a model are consistent with metric data that may come from diverse sources (Chow and Fai, 2017). In this paper, we discuss the development of a plug-in for Autodesk Revit that automates this verification process.</p>


2020 ◽  
Vol 10 (20) ◽  
pp. 7346
Author(s):  
Jae Hyuk Lee ◽  
Jeong Jun Park ◽  
Hyungchul Yoon

Building information modeling (BIM), which can efficiently manage the life cycle of structures, has been increasingly applied in the construction industry. However, it is difficult to implement BIM for existing structures, due to the differences between the design and as-built conditions. Point cloud data (PCD) can be obtained through the scan-to-BIM process, which builds a model based on the current state of the structure. The scan-to-BIM process is complicated for bridge structures and consumes significant time and resources. Therefore, this study developed a system to extract bridge design parameters automatically to reduce the time and resources for the scan-to-BIM process. The proposed automatic bridge design parameter extraction is performed in three steps: (1) noise reduction, (2) 3D transformation, and (3) parameter extraction. The validation test was conducted on the Osong test track fifth bridge in Nojang-ri, Jeondong-myeon, Yeongi-gun, Chungcheongnam-do, Korea. The system developed in this study successfully extracted the design parameters of the bridge from the PCD automatically, resulting in 0.8% error rate.


Author(s):  
C. Dore ◽  
M. Murphy

In an extensive review of existing literature a number of observations were made in relation to the current approaches for recording and modelling existing buildings and environments: Data collection and pre-processing techniques are becoming increasingly automated to allow for near real-time data capture and fast processing of this data for later modelling applications. Current BIM software is almost completely focused on new buildings and has very limited tools and pre-defined libraries for modelling existing and historic buildings. The development of reusable parametric library objects for existing and historic buildings supports modelling with high levels of detail while decreasing the modelling time. Mapping these parametric objects to survey data, however, is still a time-consuming task that requires further research. Promising developments have been made towards automatic object recognition and feature extraction from point clouds for as-built BIM. However, results are currently limited to simple and planar features. Further work is required for automatic accurate and reliable reconstruction of complex geometries from point cloud data. Procedural modelling can provide an automated solution for generating 3D geometries but lacks the detail and accuracy required for most as-built applications in AEC and heritage fields.


2021 ◽  
Vol 11 (4) ◽  
pp. 1855
Author(s):  
Franco Guzzetti ◽  
Karen Lara Ngozi Anyabolu ◽  
Francesca Biolo ◽  
Lara D’Ambrosio

In the construction field, the Building Information Modeling (BIM) methodology is becoming increasingly predominant and the standardization of its use is now an essential operation. This method has become widespread in recent years, thanks to the advantages provided in the framework of project management and interoperability. Hoping for its complete dissemination, it is unthinkable to use it only for new construction interventions. Many are experiencing what happens with the so-called Heritage Building Information Modeling (HBIM); that is, how BIM interfaces with Architectural Heritage or simply with historical buildings. This article aims to deal with the principles and working methodologies behind BIM/HBIM and modeling. The aim is to outline the themes on which to base a new approach to the instrument. In this way, it can be adapted to the needs and characteristics of each type of building. Going into the detail of standards, the text also contains a first study regarding the classification of moldable elements. This proposal is based on current regulations and it can provide flexible, expandable, and unambiguous language. Therefore, the content of the article focuses on a revision of the thinking underlying the process, also providing a more practical track on communication and interoperability.


2021 ◽  
Vol 13 (8) ◽  
pp. 1584
Author(s):  
Pedro Martín-Lerones ◽  
David Olmedo ◽  
Ana López-Vidal ◽  
Jaime Gómez-García-Bermejo ◽  
Eduardo Zalama

As the basis for analysis and management of heritage assets, 3D laser scanning and photogrammetric 3D reconstruction have been probed as adequate techniques for point cloud data acquisition. The European Directive 2014/24/EU imposes BIM Level 2 for government centrally procured projects as a collaborative process of producing federated discipline-specific models. Although BIM software resources are intensified and increasingly growing, distinct specifications for heritage (H-BIM) are essential to driving particular processes and tools to efficiency shifting from point clouds to meaningful information ready to be exchanged using non-proprietary formats, such as Industry Foundation Classes (IFC). This paper details a procedure for processing enriched 3D point clouds into the REVIT software package due to its worldwide popularity and how closely it integrates with the BIM concept. The procedure will be additionally supported by a tailored plug-in to make high-quality 3D digital survey datasets usable together with 2D imaging, enhancing the capability to depict contextualized important graphical data to properly planning conservation actions. As a practical example, a 2D/3D enhanced combination is worked to accurately include into a BIM project, the length, orientation, and width of a big crack on the walls of the Castle of Torrelobatón (Spain) as a representative heritage building.


2021 ◽  
Author(s):  
Vincenzo Barrile ◽  
Antonino Fotia

AbstractThere are several studies related to the cultural heritage digitization through HBIM (Heritage Building Information Modelling) techniques. Today, BIM (Building Information Modelling) software cannot represent old buildings with complex prominent and particularly detailed architecture perfectly, and multiple software are combined to obtain the buildings’ representation. In this paper, in order to find an alternative way of replicating the complex details present in antique buildings, a new methodology is presented. The methodology is based on a process of direct insertion of various 3D model parts (.obj), into a BIM environment. These 3D model elements, coming from the points cloud segmentation (from UAV and Laser Scanner), are transformed in intelligent objects and interconnected to form the smart model. The methodology allows to represent detail of the objects that make up an element of cultural heritage, although not standardizable in shape. Although this methodology allows to ensure a perfect reconstruction and digital preservation and to represent the different “defects” that represent and make unique a particular object of cultural heritage, it is not however fast compared with the traditional phases of point cloud tracing and more software are necessary for data processing. The proposed methodology was tested on two specific structures’ reconstruction in Reggio Calabria (South Italy): the Sant’Antonio Abate church and the Vitrioli’s portal.


Author(s):  
M. Lo Brutto ◽  
E. Iuculano ◽  
P. Lo Giudice

Abstract. The preservation of historic buildings can often be particularly difficult due to the lack of detailed information about architectural features, construction details, etc.. However, in recent years considerable technological innovation in the field of Architecture, Engineering, and Construction (AEC) has been achieved by the Building Information Modeling (BIM) process. BIM was developed as a methodology used mainly for new construction but, given its considerable potential, this approach can also be successfully used for existing buildings, especially for buildings of historical and architectural value. In this case, it is more properly referred to as Historic – or Heritage – Building Information Modeling (HBIM). In the HBIM process, it is essential to precede the parametric modeling phase of the building with a detailed 3D survey that allows the acquisition of all geometric information. This methodology, called Scan-to-BIM, involves the use of 3D survey techniques for the production of point clouds as a geometric “database” for parametric modeling. The Scan-to-BIM approach can have several issues relating to the complexity of the survey. The work aims to apply the Scan-to-BIM approach to the survey and modeling of a historical and architectural valuable building to test a survey method, based on integrating different techniques (topography, photogrammetry and laser scanning), that improves the data acquisition phase. The “Real Cantina Borbonica” (Cellar of Royal House of Bourbon) in Partinico (Sicily, Italy) was chosen as a case study. The work has allowed achieving the HBIM of the “Real Cantina Borbonica” and testing an approach based exclusively on a topographic constraint to merge in the same reference system all the survey data (laser scanner and photogrammetric point clouds).


Sign in / Sign up

Export Citation Format

Share Document