scholarly journals Property Determination, FA Composition and NMR Characterization of Palm Oil, Used Palm Oil and Their Methyl Esters

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Omojola Awogbemi ◽  
Daramy Vandi Von Kallon ◽  
Victor Sunday Aigbodion ◽  
Vuyisa Mzozoyana

The search for a cost-effective, environmentally friendly and sustainable feedstock for biodiesel production has attracted attention among researchers. After frying, palm oil may become thermally degraded and unsuitable for consumption. In the current effort, neat palm oil (NPO), waste palm oil earlier utilized for frying fish and chips (WPOFC) and waste palm oil previously utilized to fry sausage and chips (WPOSC) were transesterified into waste palm oil methyl ester, namely, WPOMEFC and WPOMESC, respectively. The PO, WPOs and their ester derivatives were subjected to physicochemical properties, fatty acid (FA) compositions and 1H and 13C nuclear magnetic resonance (NMR) analyses. The thermal degradation, transesterification process and the foods the palm oil was used to fry affected the density, kinematic viscosity, acid value, pH, iodine value and FA profile of the samples. The outcome of the characterization reveals that the 1H and 13C NMR spectra of NPO, WPOFC and WPOSC show clear similarity, but NPO exhibits different intensities from that of the WPO samples. The absence of the peaks between δ 4.6 ppm and 5.0 ppm in the 1H NMR spectrum signifies the complete transformation of triglycerides in the WPO samples into biodiesel. The 13C NMR spectrum indicates the presence of ester carbonyl carbon (C=O) in WPOMEFC and WPOMESC, peculiar to ester, at a chemical shift ranging from 174.8 ppm to 174.9 ppm.

2012 ◽  
Vol 66 (1) ◽  
Author(s):  
Adeeb Hayyan ◽  
Farouq Mjalli ◽  
Mohamed Mirghani ◽  
Mohd Hashim ◽  
Maan Hayyan ◽  
...  

AbstractAcidic crude palm oil (ACPO) produced from palm oil mills with an acid value of 18 mg g−1 was considered to be a possible feedstock for biodiesel production. Due to its high acidity, conventional transesterification cannot be applied directly for biodiesel production. Methane sulphonic acid (MSA, CH3SO3H) is used to reduce the acidity prior to the alkaline transesterification reaction. The laboratory-scale experiments involved an MSA to ACPO dosage of 0.25–3.5 %, a molar ratio (methanol to ACPO) from 4: 1 to 20: 1, reaction temperature of 40–80°C, reaction time of 3–150 min, and stirrer speed of 100–500 min−1. The optimum esterification reaction conditions were 1 % of catalyst to ACPO, with a molar ratio of methanol to ACPO of 8: 1, a stirring speed of 300 min−1, for 30 min and at 60°C. Under these conditions, the FFA content was reduced from 18 mg g−1 to less than 1 mg g−1 and with a yield of 96 %. The biodiesel produced met the EN14214 standard specifications. MSA was recycled for three times without losing its activity. The biodiesel produced in a two-stage process has a low acid value (0.14 mg g−1).


Author(s):  
O. A. Aworanti ◽  
A. O. Ajani ◽  
S. E. Agarry ◽  
K. A. Babatunde ◽  
O. D. Akinwunmi

In this research work, the optimum process variables (catalyst, methanol to oil ratio and reaction time) for transesterification of palm oil sludge (POS) to biodiesel were studied. The transesterification process was carried by mixture of palm oil sludge, methanol and catalyst with the help of magnetic stirrer at 300 rpm and at temperature of 60ºC. The catalyst used for the process was potassium hydroxide (KOH). One-Factor-at-A-Time was used to select the possible optimum levels of process variable that gives high biodiesel yield. The study was evaluated by five levels  of methanol-to-oil ratio (1:1 – 12:1), catalyst (0.1- 2%) and reaction time (30 – 150 min).The optimum process variables for transesterification of palm oil sludge (POS) to achieved maximum biodiesel yield  were found to be methanol to oil molar ratio of 12:1, catalyst loading of 1.5wt% and reaction time of 30 min. At this optimum conditions the maximum biodiesel yield was 61.2%. The biodiesel produced from transesterification of palm oil sludge was characterized in order to determine the properties of the product. The density of POS is 857.0 kg/m3, kinematic viscosity of 5.38 mm2/s, flash point of 180°C, pour point of -5°C, and Acid value of 0.17 mgKOH/g. The biodiesel produced from transesterification of palm oil sludge meets the EN 14214 and ASTM 6751 standard. Thus, this study will be helpful to determine an efficient and economical procedure for biodiesel production from non-edible raw materials with high free fatty acid.


Author(s):  
Nurul Aina Nasriqah Binti Ma’arof ◽  
Noor Hindryawati ◽  
Siti Norhafiza Mohd Khazaai ◽  
Prakash Bhuyar ◽  
Mohd Hasbi Ab. Rahim ◽  
...  

Biodiesel, an environmentally friendly biomass-based fuel, is gaining popularity globally as a cost-effective way to meet rising fuel demand. However, the high cost of raw materials and catalysts continues to drive up biodiesel production. An alternative feedstock with a heterogeneously catalyzed reaction could be the most cost-effective way to stabilize industrial biodiesel growth. Understanding these issues led to the idea of using waste palm oil as a feedstock for biodiesel production. While using waste materials as feedstock for biodiesel is an elegant solution, converting high free fatty acids (FFA) directly into methyl esters has some drawbacks. High FFA processes (acid esterification, then base transesterification) are costly. The commercial processes currently use a homogeneous system with sulfuric acid to catalyze both esterification and transesterification. However, heterogeneous solid acid catalysts are preferred over hazardous mineral acids for high FFA esterification because they are less corrosive, produce less waste, and are easier to separate from reactants and products by filtration, recovery, and reusability. Heterogeneous acid catalysts can also simultaneously catalyze transesterification and esterification reactions. Thus, new waste-based support for heterogeneous catalysts (solid acid catalysts) is required to convert waste oils into biodiesel.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 196
Author(s):  
N. Hamzah ◽  
S. Mohd Isa ◽  
N. Ahmad Tajuddin

Biodiesel can help to reduce the world‘s dependence on fossil fuels and which also has significant environmental benefits. Biodiesel is a mixture of fatty acid methyl esters (FAME) obtained via transesterification of vegetable oils or animal fats with an alcohol. The rubber seed oil (RSO) is chosen as a potential non-edible vegetable oil for the production of biodiesel. The oil was extracted from the seed by using pressurized liquid extraction (ASE). The percentage rubber seed oil extracted from 2.6 kilograms rubber seed was obtained 35%. The acid value of RSO has reduced from 52.3 mg KOH/g to 0.8 mg KOH/g while FFA% value has reduced from 35% to 1.18% after acid esterification was applied to RSO. The oil was proceed with base transesterification where the triglycerides from the oil were converted into FAME. The optimization of transesterification process was performed in order to determine the optimum conditions that give the highest FAME yield. Result shows that optimum conditions of the transesterification of rubber seed oil were 1:6 of oil to methanol mass ratio ,30 wt% KOH catalyst, 60 oC reaction temperature and 60 minutes reaction time, that offering the highest biodiesel yield of 96%.   


Author(s):  
J.A. Colín-Luna ◽  
E.G. Zamora-Rodea ◽  
M.M. González-Brambila ◽  
E. Barrera-Calva ◽  
R. Rosas-Cedillo ◽  
...  

AbstractEdible oils, used in restaurants and households, have become a potential source of environmental pollution because their residuals are indiscriminately poured into rivers and lakes. One cost-effective and sustainable way to treat this waste is using this biomass in the production of biofuels, such as biodiesel. The main reactions for obtaining biodiesel are catalyzed in a homogeneous phase, using basic or acid solutions (NaOH or H2SO4, respectively) or in a heterogeneous phase, using a porous material with or without metals. One interesting reaction, owing to its low energy consumption, is carried out using biocatalysts of enzymes immobilized in porous materials. In this work, a porcine pancreatic lipase (PPL) was immobilized in a zirconium-pillared clay (Zr-PILC) by means of two syntheses: adsorption (PPL/Zr-PILC ADS) and cross-linking (PPL/Zr-PILC CL). The biocatalysts were used in the transesterification of canola oil. The amount of methyl esters was produced in the order Zr-PILC ≈ PPL ≪ PPL/Zr-PILC CL ≪ PPL/Zr-PILC ADS. According to these results, the activity and selectivity are a function of the method of synthesis and show the potential of these biocatalysts to transform waste oil in biodiesel at low cost by means of a sustainable process.


2019 ◽  
Author(s):  
Chem Int

The oil seed production in the country presently meets only 60-70% of its total edible oil requirements and the rest is met through imports. India also has a potential of collecting 5 million tons of tree-borne oilseeds (TBO) of which only one million tons are being collected presently. The consumption of edible oil is very high in the country and still the indigenous production does not meet the demand and considerable amount of edible oil is imported and it is therefore, not advisable to divert these sources for biodiesel production. On the other hand, the non-edible oil resources can be a solution for biodiesel production. Non- edible oil from the plant seeds is the most promising alternative fuel for internal combustion engine because it is renewable, environment friendly, non-toxic, biodegradable has no sulphur and aromatics, has favourable combustion value and higher cetane number. Extensive work has been done on the transesterification of non-edible oils; however, no significant work has been done on the optimization of transesterification process, oil characterization and fuel analysis of most of the non-edible seed oils. In the present work, optimization of transesterification process and analysis of biodiesel from non-edible oil was done; based on optimized protocol for biodiesel production from non-edible oilseeds of Neem and Pongamia converted into fatty acid methyl esters (FAME) through base catalyzed transesterification using an optimum ratio of 1:6 (Oil : Methanol) at 60oC. Biodiesel from these sources was analyzed for qualitative and quantitative characterization by using, GC-MS and FT-IR techniques. Based on qualitative and quantitative analysis of biodiesel, it is concluded that the biodiesel from these species can be feasible, cost effective and environment friendly.


2019 ◽  
Vol 8 (1) ◽  
pp. 756-775 ◽  
Author(s):  
S. Niju ◽  
Fernando Russell Raj ◽  
C. Anushya ◽  
M. Balajii

Abstract Moringa oleifera oil (MOO), a second-generation lipid feedstock that has been reckoned as a promising feedstock for biodiesel production in recent years. In the current study, crude MOO possessing high acid value (80.5 mg of KOH/g) was subjected to two step esterification and transesterification process for biodiesel production and the process was applied with central composite design (CCD) based response surface methodology (RSM). The results showed that H2SO4 concentration of 0.85 vol%, reaction time of 70.20 min, and methanol to oil ratio of 1:1 (vol/vol) significantly decreased the acid value to 3.10 mg of KOH/g of oil. Moreover, copper oxide-calcium oxide (CuO-CaO) nanoparticles were developed and evaluated as a novel heterogeneous base catalyst for synthesizing Moringa oleifera methyl esters (MOME). The synthesized catalyst was scrutinized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDAX) analysis. Copper oxide (CuO) was perceived to be the dominant phase in the synthesized catalyst. Highest MOME conversion of 95.24% was achieved using 4 wt% CuO-CaO loading, 0.3:1 (vol/vol) methanol to oil ratio and 150 min reaction time as the optimal process conditions.


2020 ◽  
Vol 9 (1) ◽  
pp. 119-123
Author(s):  
H Hadiyanto ◽  
Apsari Puspita Aini ◽  
Widayat Widayat ◽  
Kusmiyati Kusmiyati ◽  
Arief Budiman ◽  
...  

Biodiesel can be produced from various vegetable oils and animal fat. Abundant sources of vegetable oil in Indonesia, such as Calophyllum inophyllum, Ricinus communis, palm oil, and waste cooking oil, were used as raw materials. Multi-feedstock biodiesel was used to increase the flexibility operation of biodiesel production. This study was conducted to determine the effect of a combination of vegetable oils on biodiesel characteristics. Degumming and two steps of esterification were applied for high free fatty acid feedstock before trans-esterification in combination with other vegetable oils. Potassium hydroxide was used as a homogenous catalyst and methanol as another raw material. The acid value of C. inophyllum decreased from 54 mg KOH/gr oil to 2.15 mg KOH/gr oil after two steps of esterification. Biodiesel yield from multi-feedstock was 87.926% with a methanol-to-oil molar ratio of 6:1, temperature of 60 ℃, and catalyst of 1%wt. ©2020. CBIORE-IJRED. All rights reserved


2018 ◽  
Vol 159 ◽  
pp. 01049 ◽  
Author(s):  
Khairil ◽  
Aulia Rizki ◽  
Iskandar ◽  
Jalaluddin ◽  
A.S. Silitonga ◽  
...  

Biodiesel production from non-edible vegetable oils is an effective way to conquer the linked problems with edible oils such as food versus fuel and other environmental impacts. Cerbera odollam oil is one of these possible non-edible feed stocks for future biodiesel production. This study evaluated the potential biodiesel production from cerbera odollam. The seed was collected and extracted from Aceh, Indonesia. Moreover, biodiesel has been produced using degummed (H3PO4) and two step acid catalyst (HCl) and alkaline catalyst (KOH). The results of properties of the cerbera odollam methyl esters show that such as viscosity was about 847.9 mm2/s, density was 3.1578 kg/m3, flash point was 214.0°C, acid value was 0.4 mg KOH/g, oxidation stability was 6.35 h, FAME content was 97.77 % w/w and heating value was 40.49 MJ/kg. After analysing these properties, it has been found that there is a huge chance to produce biodiesel from this seed which complies with the limits of ASTM 6751 and EN 14214 specifications and therefore it can boost the future production of biodiesel from non-edible sources.


2019 ◽  
Vol 8 (1) ◽  
pp. 33 ◽  
Author(s):  
Soulayman Soulayman ◽  
Ola Dayoub

This study is devoted to produce biodiesel from recycled wastes frying oils (WFO) using commercial grade chemicals in an attempt to help reducing the cost of biodiesel and pollution coming from WFO. The base – catalyzed transesterification method was applied. The variables affecting the yield and characteristics of the biodiesel produced from WFO were studied. Sodium hydroxide is used as catalyst. Different reaction times, different methanol/WFO volume ratios and different catalyst/WFO weight ratios were used with purpose of achieving the best conditions for biodiesel production A series of experiments were carried out, using methanol/WFO volume ratios from 10% to 30% and catalyst/WFO weight ratio from 0.2% to 0.8%. It was found that in treating WFO which contains 0.12% of water by weight and having an acid value of 0.52 mg of KOH/g of oil, and an iodine value 130.42 gI/100 g of oil, no need in acidic pretreatment.  Moreover, it was found that, for WFO with an acidic value of 0.52 mg KOH/gWFOs, results show that a methanol/WFO volume ratio of 13% and a catalyst/WFO weight ratio of 0.4% give the highest yield of methyl esters.  A pilot production unit of 400l/day of production capacity was designed and constructed on the basis of laboratory experiments and the process was verified on the pilot scale.©2019. CBIORE-IJRED. All rights reservedArticle History: Received October 18th 2017; Received in revised form May 17th 2018; Accepted December 8th 2018; Available onlineHow to Cite This Article: Soulayman, S. and Ola, D. (2019) Synthesis Parameters of Biodiesel From Frying Oils Wastes. Int. Journal of Renewable Energy Development, 8(1), 33-39.https://doi.org/10.14710/ijred.8.1.33-39


Sign in / Sign up

Export Citation Format

Share Document