scholarly journals Mechanical Properties of Rock–Coal–Rock Composites at Different Inclined Coal Seam Thicknesses

2022 ◽  
Vol 9 ◽  
Author(s):  
Bo Ma ◽  
Feng Wang ◽  
Hongyang Liu ◽  
Dawei Yin ◽  
Zhiguo Xia

A comprehensive understanding of the mechanical properties of coal and rock sections is necessary for interpreting the deformation and failure modes of such underground sections and for evaluating the potential dynamic hazards. However, most studies have focused on horizontal coal–rock composites and the mechanical properties of inclined coal–rock composites have not been considered. To explore the influence of different confining pressures and inclined coal seam thicknesses on the mechanical properties and failure characteristics of rock–coal–rock (RCR) composites, a numerical model based on the particle flow code was used to perform simulations on five inclined RCR composites at different confining pressures. The results show that the mechanical properties and failure characteristics of the RCR composites are affected considerably by the inclined coal seam thickness and the confining pressure. (1) When the inclined coal seam thickness is constant, the elasticity modulus of the inclined RCR composite increases nonlinearly with the confining pressure at first, and then remains constant. At the same confining pressure, the elasticity modulus of the inclined RCR composite decreases nonlinearly with the inclined coal seam thickness. (2) When the confining pressure is constant, the peak stress of the inclined RCR composite decreases with the increase of the inclined coal seam thickness. When the inclined coal seam thickness is constant, the peak stress increases with the confining pressure. (3) As the inclined coal seam thickness increases, the peak strain of the inclined RCR composite first decreases rapidly, and then remains constant when there is no confining pressure. When the confining pressure is between 5 and 20 MPa, the peak strain of the inclined RCR composite gradually increases. (4) In the absence of confining pressure, there are few microcracks in the rock at an inclined coal seam thickness of 10 mm, whereas all the other cracks are in the coal section. When the confining pressure ranges between 5 and 20 MPa, the failure modes of the RCR composite can be divided into Y- and X-types.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Guoliang Yang ◽  
Jingjiu Bi ◽  
Xuguang Li ◽  
Jie Liu ◽  
Yanjie Feng

Shale gas is the most important new energy source in the field of energy, and its exploitation is very important. The research on the dynamic mechanical properties of shale is the premise of exploitation. To study the dynamic mechanical properties of shale from the Changning-Weiyuan area of Sichuan Province, China, under confining pressure, we used a split Hopkinson pressure bar (SHPB) test system with an active containment device to carry out dynamic compression tests on shale with different bedding angles. (1) With active confining pressure, the shale experiences a high strain rate, and its stress-strain curve exhibits obvious plastic deformation. (2) For the same impact pressure, the peak stress of shale describes a U-shaped curve with an increasing bedding angle; besides, the peak stress of shale with different bedding angles increases linearly with rising confining pressure. The strain rate shows a significant confining pressure enhancement effect. With active confining pressure, the peak strain gradually decreases as the bedding angle increases. (3) As a result of the influence of different bedding angles, the dynamic elastic modulus of shale has obvious anisotropic characteristics. Shale with different bedding angles exhibits different rates of increase in the dynamic elastic modulus with rising confining pressure, which may be related to differences in the development of planes of weakness in the shale. The results of this study improve our understanding of the behavior of bedded shale under stress.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zengfu Yang ◽  
Zengcai Wang ◽  
Ming Yan

The technology of coal-rock interface recognition is the core of realizing the automatic heightening technology of shearer’s rocker. Only by accurately and quickly identifying the interface of coal and rock can we realize the fully automatic control of shearer. As the only one used in the actual detection of coal mining machine drum cutting coal seam after the thickness of the remaining coal seam detection method, natural γ-ray has a very practical advantage. Based on the relationship between the attenuation of the natural γ-ray passing through the coal seam and the thickness of the coal seam, the mathematical model of the attenuation of the natural γ-ray penetrating coal seam is established. By comparing the attenuation intensity of γ-ray with or without brackets, it is verified that the hydraulic girders will absorb some natural γ-rays. Finally, this paper uses the ground simulation experiment and the field experiment to verify the correctness of the mathematical model and finally develop the natural γ-ray seam thickness sensor. The sensor has the function of indicating the thickness of the coal seam, measuring the natural γ-ray intensity, and storing and processing the data.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shuai Liu ◽  
Gengshe Yang ◽  
Xihao Dong ◽  
Yanjun Shen ◽  
Hui Liu

The lateral unloading strength and deformation of surrounding frozen rock are the key parameters for safety evaluation of frozen shaft construction. A low-temperature and high-pressure rock triaxial test system was used to simulate freezing construction, and a constant axial pressure unloading confining pressure test was carried out on frozen sandstone. The effects of freezing temperature, initial confining pressure, and unloading rate on the strength, deformation, and failure modes of frozen sandstone are studied. The main results of the study are as follows: (1) under the initial confining pressure of 20 MPa, the temperature of the sandstone decreases from 20°C to –5°C, and the peak stress and elastic modulus of triaxial compression increase by approximately 3 times. Under lateral unloading conditions, the peak stress of frozen sandstone is about 2∼3 times that of 20°C sandstone, and the peak strain of 20°C sandstone is smaller than that of frozen sandstone. The temperature of frozen sandstone decreases and the rate of increase in the peak stress of triaxial compression is slightly less than the rate of increase in the peak stress of lateral unloading. (2) The initial confining pressure of frozen sandstone increases, the growth rate of axial and radial strain increases, the radial strain dominates the failure process, and the lateral unloading strength decreases significantly. (3) The lateral unloading rate of frozen sandstone increases, the peak strength increases, and the axial and radial strain decrease. At a low unloading rate, partial creep deformation occurs. (4) The frozen rock sample undergoes tensile splitting failure under lateral unloading. According to the stress-strain curve of the frozen rock sample, the relationship between changes in the deformation modulus and changes in the confining pressure unloading amount during the unloading process of the rock sample is obtained.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yang Xue ◽  
Xiaohui Liu ◽  
Rui Zhao ◽  
Yu Zheng ◽  
Xin Gui

To investigate the dynamic failure characteristics of bedding rocks in depth, a series of dynamic impact compression tests on parallel and vertical bedding coal rocks were conducted by the split Hopkinson pressure bar test system at 10–103 s−1 strain rates and 0, 4, 8, and 12 MPa confining pressures. According to the experiments, the mechanical properties and energy characteristics of bedding coal rock under different confining pressures and strain rates were obtained, and a triaxial dynamic constitutive model of bedding coal rock was established based on the energy theory of rock failure. The results show that the compressive strength, peak strain, incident energy, dissipated energy, and dynamic strength increase factor gradually increase with increase in strain rate, but the increase in peak strain weakens as confining pressure rises. The influence of bedding structure on strength and energy is not obvious in the uniaxial state, while it gradually enhances as confining pressure increases. The obvious difference in DIF and the energy dissipation ratio of bedding coal rocks gets obvious in SHPB tests. Considering the influence of confining pressure, strain rate, and bedding on the dynamic failure characteristics, the dynamic constitutive model of bedding coal rock was established by introducing the comprehensive influence factor K and the DIF. Comparing with test results, the model parameters are almost confirmed, and the correctness of the model is further verified by analysing the law of K value. Meanwhile, the stress-softening characteristics of coal rock in postpeak are well simulated by the dynamic constitutive model. The results can provide reference value for dynamic issues such as high-efficiency rock breaking, prevention of rock burst, and surrounding rock support in deep rock masses.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1830 ◽  
Author(s):  
Hongbo Li ◽  
Jianguang Yin ◽  
Pengfei Yan ◽  
Hao Sun ◽  
Qingqing Wan

To explore the influence of fly ash (FA) and silica fume (SF) on the mechanical properties of self-compacting concrete (SCC) under uniaxial and triaxial, the compressive strength test, splitting strength test, ultrasonic testing test, and triaxial test were performed in this paper. The results show that the 3 days compressive strength and splitting strength of SCC decreased with the increase of FA substitution rate. The 28 days, 56 days, and 91 days compressive strength and splitting strength of SCC increased first and then decreased with the increase of FA substitution rate. The peak stress and peak strain of SCC gradually increased with the increase of confining pressure. The peak stress and strain of SCC increased first and then decreased with the increase of FA substitution rate. Moreover, the relationship models between compressive strength and splitting strength, between compressive strength and amplitude, between peak stress, peak strain and confining pressure under different FA substitution rates were proposed. As a conclusion, the addition of SF can increase the strength of SCC obviously. Under uniaxial stress, SCC failure mode is splitting failure, under triaxial stress, SCC failure mode is shear failure. Based on the Mohr-Coulomb strength theory, the failure criterion of SCC with FA and SF was discussed.


2014 ◽  
Vol 670-671 ◽  
pp. 401-406
Author(s):  
Xiao Fei Wang ◽  
Yang Ping Wang

Through the conventional triaxial test about plain reactive powder concrete under different confining pressures at 0Mpa, 25 Mpa,50 Mpa and 75 Mpa, this paper obtained the stress-strain curves in axial direction and radial direction of plain reactive powder concrete under different confining pressures, compared and analyzed the effects of confining pressures on peak strength, peak strain, Elastic modulus, Poisson ratio and failure modes of plain reactive power concrete also. The results showed that peak strength increases with the increase of confining pressure, when confining pressure increases from 0Mpa to 25Mpa, the peak strength increases most rapidly. The results also showed that peak strain increases linearly with the increase of confining pressure, when confining pressure increase from 0Mpa to 75Mpa gradually, the peak strain increases from 0.2 percent to 0.93 percent, meanwhile Poisson ratio increase with the increase of confining pressures, yet Elastic modulus changes slight at different confining pressures, failure modes of plain reactive powder concrete at different confining pressures exhibit different modes, when confining pressure is 0Mpa, failure mode presents as splitting failure, shear failure mode at 25Mpa, while shear failure merge local crushing at 50MPa and 75MPa.


Author(s):  
Manfred Staat

AbstractExtension fractures are typical for the deformation under low or no confining pressure. They can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. In this article, it is shown that the simple extension strain criterion makes unrealistic strength predictions in biaxial compression and tension. To overcome this major limitation, a new extension strain criterion is proposed by adding a weighted principal shear component to the simple criterion. The shear weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr–Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting extension failure modes, which are unexpected in the classical understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain leading to dilatancy. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak stress CP. Different from compressive loading, tensile loading requires only a limited number of critical cracks to cause failure. Therefore, for tensile stresses, the failure criteria must be modified somehow, possibly by a cut-off corresponding to the CI stress. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion.


2014 ◽  
Vol 1014 ◽  
pp. 49-52
Author(s):  
Xiao Ping Su

With the wide application of high strength concrete in the building construction,the risk making concrete subject to high temperatures during a fire is increasing. Comparison tests on the mechanical properties of high strength concrete (HSC) and normal strength concrete (NSC) after the action of high temperature were made in this article, which were compared from the following aspects: the peak stress, the peak strain, elasticity modulus, and stress-strain curve after high temperature. Results show that the laws of the mechanical properties of HSC and NSC changing with the temperature are the same. With the increase of heating temperature, the peak stress and elasticity modulus decreases, while the peak strain grows rapidly. HSC shows greater brittleness and worse fire-resistant performance than NSC, and destroys suddenly. The research and evaluation on the fire-resistant performance of HSC should be strengthened during the structural design and construction on the HSC buildings.


1980 ◽  
Vol 17 (4) ◽  
pp. 498-508 ◽  
Author(s):  
R. N. Yong ◽  
D. Taplin ◽  
G. Wiseman

The importance of disturbance and remoulding to the alteration of mechanical properties of sensitive soils has been well documented in the geotechnical literature both in terms of laboratory and field behaviours. Man-made transient dynamic input such as dynamite blasting, heavy vehicles, and train movement have been suspected of being capable of causing a reduction in the in situ strength parameters of sensitive clays. A laboratory test program was undertaken to determine whether dynamic loading at peak stress levels below normal failure strength caused similar changes in the mechanical properties, and specifically to quantify the phenomena.In order to simulate highly overconsolidated conditions most of the tests were carried out under conditions of no confining pressure, although supplemental data were obtained from consolidated undrained tests. Some of the variables examined in this program were confining pressure, mean deviatoric stress, cyclic deviatoric stress, cyclic strain, number of applications, frequency, and reference strength. In order to compare the effect of dynamic input with the long-term creep phenomena, a simultaneous constant load program was undertaken.In general terms, the study indicates that under the prestated laboratory test conditions no major reduction in peak strength was found under dynamic loading, and that failure would occur at comparative stress levels under dead-load conditions, but required a greater time. In addition, examination of the sample after failure revealed that any remoulding of the sample appeared to be restricted to the area adjacent to the shear zone.


2003 ◽  
Vol 24 (4) ◽  
pp. 879-884 ◽  
Author(s):  
J. Tetuko S. S. ◽  
R. Tateishi ◽  
N. Takeuchi

Sign in / Sign up

Export Citation Format

Share Document