scholarly journals Diagenesis Evolution and Pore Types in Tight Sandstone of Shanxi Formation Reservoir in Hangjinqi Area, Ordos Basin, Northern China

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 470
Author(s):  
Yue Zhang ◽  
Jingchun Tian ◽  
Xiang Zhang ◽  
Jian Li ◽  
Qingshao Liang ◽  
...  

Diagenesis and pore evolution of tight sandstone reservoir is one of the most important issues surrounding clastic reservoirs. The tight sandstone of the Shanxi Formation is an important oil and gas producing layer of the Upper Paleozoic in Ordos Basin, and its densification process has an important impact on reservoir quality. This study determined the physical properties and diagenetic evolution of Shanxi Formation sandstones and quantitatively calculated the pore loss in the diagenetic process. Microscopic identification, cathodoluminescence, and a scanning electron microscope were used identify diagenesis, and the diagenesis evolution process was clarified along with inclusion analysis. In addition, reservoir quality was determined based on the identification of pore types and physical porosity. Results show that rock types are mainly sublitharenite and litharenite. The reservoir has numerous secondary pores after experiencing compaction, cementation, and dissolution. We obtained insight into the relationship between homogenous temperature and two hydrocarbon charges. The results indicated that there were two hydrocarbon charges in the Late Triassic–Early Jurassic (70–90 °C) and Middle Jurassic–Early Cretaceous (110–130 °C) before reservoir densification. The quantitative calculation of pore loss shows that the average apparent compaction, cementation, and dissolution rates are 67.36%, 22.24%, and 80.76%, respectively. Compaction directly affected the reservoir tightness, and intense dissolution was beneficial to improve the physical properties of the reservoir.

Author(s):  
Gao Zhanwu ◽  
Shi Jian ◽  
Xie Qichao ◽  
Zhou Yan ◽  
Zhou Shuxun

AbstractTight sandstone reservoirs dominated by are developed in the Chang 6 oil layer group of the Yanchang Formation in the central-western part of the Ordos Basin. Featuring the lacustrine delta facies, Chang 6 formation in the center-west area of Ordos Basin shows an increasing petroleum reserve expectation. Its exploitation practice, however, has many problems caused by tight sandstone reservoir features. According to diagenetic and pore analysis, the diagenetic facies in the study area are grouped into four types: chlorite-film-intergranular-pore, feldspar-dissolution, clay-cemented-micropore, carbonate-cemented-tightness for their obvious differences in mineral feature and pore evolution. By introducing the comprehensive classification parameter synthesized from 9 other parameters, the reservoir quality is divided up into four levels: I(Feci > 1), II(3 ≤ Feci ≤ 7), III(-2 ≤ Feci ≤ 3), IV(Feci ≤ -2). The reservoir quality division matches well with the diagenetic facies group. To decide the diagenetic type and reservoir quality division in all wells, the logging data are utilized with the Fisher discriminant method, which has obtained a good performance. The method enables the reservoir quality analysis expanding to all wells from samples, which is helpful for exploitation of the study area.


2019 ◽  
Vol 7 (3) ◽  
pp. T687-T699
Author(s):  
Shuwei Ma ◽  
Dazhong Ren ◽  
Lifa Zhou ◽  
Fengjuan Dong ◽  
Shi Shi ◽  
...  

Diagenesis is one of the most important factors impacting the performance of many reservoirs and is perhaps the most important factor impacting the performance of tight sandstone reservoirs, such as those of the Sulige gas field in the Ordos Basin of China. However, the relationship between diagenesis and related parameters determining reservoir physical properties remains unclear. Therefore, we have analyzed experimental data from high-pressure mercury intrusion porosimetry, scanning electron microscopy, and thin sections in addition to using a porosity recovery calculation model to investigate microscopic characteristics, diagenesis, and pore-evolution processes of the low-permeability tight gas reservoir of the He-8 unit of the Sulige gas field in the Ordos Basin. In addition, we have identified the impacts of diagenesis on reservoir characteristics and established the relationship between diagenesis and reservoir quality evolution. We also used the Beard primary porosity model to recover the primary porosity, and to built the reducing and enhancing calculation models for intergranular pore, dissolution pore, and intercrystalline pore during diagenesis. Based on the quantitative relationship between diagenesis processes and porosity evolution, we found that the results of simulation calculation and experimental works were in close agreement with minimal error.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dazhong Ren ◽  
Fu Yang ◽  
Rongxi Li ◽  
Yuhong Li ◽  
Dengke Liu

To analyze the impact of the factors on physical properties and the mechanism of tightness as well as favorable accumulation space of tight sandstone reservoir, comprehensive analysis is conducted using various kinds of experiments. The results show that the predominant rock type is medium-coarse grained lithic quartzarenite, and the main accumulating space is the dissolved secondary pores. Reservoir pore-throat structures can be divided into four categories. Based on morphologies and parameters which derived from capillary pressure curves, the physical properties rank in the following descending sequence: Type   I > Type   II > Type   III > Type   IV . The reservoir quality is influenced by both sedimentation and diagenesis synthetically. The underwater distributary channel is the dominant space for favorable reservoir. Compaction and cementation play dominant roles in the reduction of permeability. The loss of primary pores caused by both those diagenesis are 20.52% and 16.91%, respectively. Secondary pores formed by dissolution improve the reservoir quality by increase the porosity (2.68%). This suggests that weak diagenesis greatly contributes to the improvement of reservoir quality.


2021 ◽  
pp. 014459872199851
Author(s):  
Yuyang Liu ◽  
Xiaowei Zhang ◽  
Junfeng Shi ◽  
Wei Guo ◽  
Lixia Kang ◽  
...  

As an important type of unconventional hydrocarbon, tight sandstone oil has great present and future resource potential. Reservoir quality evaluation is the basis of tight sandstone oil development. A comprehensive evaluation approach based on the gray correlation algorithm is established to effectively assess tight sandstone reservoir quality. Seven tight sandstone samples from the Chang 6 reservoir in the W area of the AS oilfield in the Ordos Basin are employed. First, the petrological and physical characteristics of the study area reservoir are briefly discussed through thin section observations, electron microscopy analysis, core physical property tests, and whole-rock and clay mineral content experiments. Second, the pore type, throat type and pore and throat combination characteristics are described from casting thin sections and scanning electron microscopy. Third, high-pressure mercury injection and nitrogen adsorption experiments are optimized to evaluate the characteristic parameters of pore throat distribution, micro- and nanopore throat frequency, permeability contribution and volume continuous distribution characteristics to quantitatively characterize the reservoir micro- and nanopores and throats. Then, the effective pore throat frequency specific gravity parameter of movable oil and the irreducible oil pore throat volume specific gravity parameter are introduced and combined with the reservoir physical properties, multipoint Brunauer-Emmett-Teller (BET) specific surface area, displacement pressure, maximum mercury saturation and mercury withdrawal efficiency parameters as the basic parameters for evaluation of tight sandstone reservoir quality. Finally, the weight coefficient of each parameter is calculated by the gray correlation method, and a reservoir comprehensive evaluation indicator (RCEI) is designed. The results show that the study area is dominated by types II and III tight sandstone reservoirs. In addition, the research method in this paper can be further extended to the evaluation of shale gas and other unconventional reservoirs after appropriate modification.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 453
Author(s):  
Wenhuan Li ◽  
Tailiang Fan ◽  
Zhiqian Gao ◽  
Zhixiong Wu ◽  
Ya’nan Li ◽  
...  

The Lower Jurassic reservoir in the Niudong area of the northern margin of Qaidam Basin is a typical low permeability sandstone reservoir and an important target for oil and gas exploration in the northern margin of the Qaidam Basin. In this paper, casting thin section analysis, scanning electron microscopy, X-ray diffraction, and stable isotope analysis among other methods were used to identify the diagenetic characteristics and evolution as well as the main factors influencing reservoir quality in the study area. The predominant types of sandstone in the study area are mainly feldspathic lithic sandstone and lithic arkose, followed by feldspathic sandstone and lithic sandstone. Reservoir porosity ranges from 0.01% to 19.5% (average of 9.9%), and permeability ranges from 0.01 to 32.4 mD (average of 3.8 mD). The reservoir exhibits robust heterogeneity and its quality is mainly influenced by diagenesis. The Lower Jurassic reservoir in the study area has undergone complex diagenesis and reached the middle diagenesis stage (A–B). The quantitative analysis of pore evolution showed that the porosity loss rate caused by compaction and cementation was 69.0% and 25.7% on average, and the porosity increase via dissolution was 4.8% on average. Compaction was the main cause of the reduction in the physical property of the reservoir in the study area, while cementation and dissolution were the main causes of reservoir heterogeneity. Cementation can reduce reservoir space by filling primary intergranular pores and secondary dissolved pores via cementation such as a calcite and illite/smectite mixed layer, whereas high cement content increased the compaction resistance of particles to preserve certain primary pores. δ13C and δ18O isotopes showed that the carbonate cement in the study area was the product of hydrocarbon generation by organic matter. The study area has conditions that are conductive to strong dissolution and mainly occur in feldspar dissolution, which produces a large number of secondary pores. It is important to improve the physical properties of the reservoir. Structurally, the Niudong area is a large nose uplift structure with developed fractures, which can be used as an effective oil and gas reservoir space and migration channel. In addition, the existence of fractures provides favorable conditions for the uninterrupted entry of acid fluid into the reservoir, promoting the occurrence of dissolution, and ultimately improves the physical properties of reservoirs, which is mainly manifested in improving the reservoir permeability.


2016 ◽  
Vol 20 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Jinxian He ◽  
Xiaoli Zhang ◽  
Li Ma ◽  
Hongchen Wu ◽  
Muhammad Ashraf

<p>There are enormous resources of unconventional gas in coal measures in Ordos Basin. In order to study the geological characteristics of unconventional gas in coal Measures in Ordos Basin, we analyzed and summarized the results of previous studies. Analysis results are found that, the unconventional gas in coal measures is mainly developed in Upper Paleozoic in Eastern Ordos Basin, which including coalbed methane, shale gas and tight sandstone gas. The oil and gas show active in coal, shale and tight sandstone of Upper Paleozoic in Ordos Basin. Coalbed methane reservoir and shale gas reservoir in coal measures belong to “self-generation and self- preservation”, whereas the coal measures tight sandstone gas reservoir belongs to “allogenic and self-preservation”. The forming factors of the three different kinds of gasses reservoir are closely related and uniform. We have the concluded that it will be more scientific and reasonable that the geological reservoir-forming processes of three different kinds of unconventional gas of coal measures are studied as a whole in Ordos Basin, and at a later stage, the research on joint exploration and co-mining for the three types of gasses ought to be carried out.</p>


Sign in / Sign up

Export Citation Format

Share Document