scholarly journals Pansharpening by Complementing Compressed Sensing with Spectral Correction

2020 ◽  
Vol 10 (17) ◽  
pp. 5789
Author(s):  
Naoko Tsukamoto ◽  
Yoshihiro Sugaya ◽  
Shinichiro Omachi

Pansharpening (PS) is a process used to generate high-resolution multispectral (MS) images from high-spatial-resolution panchromatic (PAN) and high-spectral-resolution multispectral images. In this paper, we propose a method for pansharpening by focusing on a compressed sensing (CS) technique. The spectral reproducibility of the CS technique is high due to its image reproducibility, but the reproduced image is blurry. Although methods of complementing this incomplete reproduction have been proposed, it is known that the existing method may cause ringing artifacts. On the other hand, component substitution is another technique used for pansharpening. It is expected that the spatial resolution of the images generated by this technique will be as high as that of the high-resolution PAN image, because the technique uses the corrected intensity calculated from the PAN image. Based on these facts, the proposed method fuses the intensity obtained by the component substitution method and the intensity obtained by the CS technique to move the spatial resolution of the reproduced image close to that of the PAN image while reducing the spectral distortion. Experimental results showed that the proposed method can reduce spectral distortion and maintain spatial resolution better than the existing methods.

Author(s):  
Dr.Vani. K ◽  
Anto. A. Micheal

This paper is an attempt to combine high resolution panchromatic lunar image with low resolution multispectral lunar image to produce a composite image using wavelet approach. There are many sensors that provide us image data about the lunar surface. The spatial resolution and spectral resolution is unique for each sensor, thereby resulting in limitation in extraction of information about the lunar surface. The high resolution panchromatic lunar image has high spatial resolution but low spectral resolution; the low resolution multispectral image has low spatial resolution but high spectral resolution. Extracting features such as craters, crater morphology, rilles and regolith surfaces with a low spatial resolution in multispectral image may not yield satisfactory results. A sensor which has high spatial resolution can provide better information when fused with the high spectral resolution. These fused image results pertain to enhanced crater mapping and mineral mapping in lunar surface. Since fusion using wavelet preserve spectral content needed for mineral mapping, image fusion has been done using wavelet approach.


2016 ◽  
Vol 4 (2) ◽  
pp. 116
Author(s):  
Thiago Statella

In December 2014, Brazil and China successfully launched the CBERS-4 satellite, the fourth generation of CBERS satellites. In the payload module, the satellite carries the MUXCAM, a 20 m/pixel spatial resolution multispectral camera. The MUXCAM was built by Brazil and it is an improvement of the CCD camera on board CBERS-1, 2 and 2B satellites. In this paper the geometric quality of the MUXCAM images is analyzed. One can measure the geometric quality of the CCD sensor by calculating the positioning and the internal accuracy of the images acquired by it. The positional accuracy for the MUXCAM resulted in ~404 m whereas the internal accuracy resulted in ~30 m, better than 2 pixels. Therefore, in less rigorous applications in which a high accuracy in coordinates is not mandatory, and in which such errors can be neglected, the multispectral images acquired by MUXCAM can be used without a prior geometric correction.    


Author(s):  
Danang Surya Candra

Image fusion is a process to generate higher spatial resolution multispectral images by fusion of lower resolution multispectral images and higher resolution panchromatic images. It is used to generate not only visually appealing images but also provide detailed images to support applications in remote sensing field, including rural area. The aim of this study was to evaluate the performance of SPOT-6 data fusion using Gram-Schmidt Spectral Sharpening (GS) method on rural areas. GS method was compared with Principle Component Spectral Sharpening (PC) method to evaluate the reliability of GS method. In this study, the performance of GS was presented based on multispectral and panchromatic of SPOT-6 images. The spatial resolution of the multispectral (MS) image was enhanced by merging the high resolution Panchromatic (Pan) image in GS method. The fused image of GS and PC were assessed visually and statistically. Relative Mean Difference (RMD), Relative Variation Difference (RVD), and Peak Signal to Noise Ratio (PSNR) Index were used to assess the fused image statistically. The test sites of rural areas were devided into four main areas i.e., whole area, rice field area, forest area, and settlement. Based on the results, the visual quality of the fused image using GS method was better than using PC method. The color of the fused image using GS was better and more natural than using PC. In the statistical assessment, the RMD results of both methods were similar. In the RVD results, GS method was better then PC method especially in band 1 and band 3. GS method was better than PC method in PSNR result for each test site. It was observed that the Gram-Schmidt method provides the best performance for each band and test site. Thus, GS was a robust method for SPOT-6 data fusion especially on rural areas.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1667 ◽  
Author(s):  
Dong Zhang ◽  
Liyin Yuan ◽  
Shengwei Wang ◽  
Hongxuan Yu ◽  
Changxing Zhang ◽  
...  

Wide Swath and High Resolution Airborne Pushbroom Hyperspectral Imager (WiSHiRaPHI) is the new-generation airborne hyperspectral imager instrument of China, aimed at acquiring accurate spectral curve of target on the ground with both high spatial resolution and high spectral resolution. The spectral sampling interval of WiSHiRaPHI is 2.4 nm and the spectral resolution is 3.5 nm (FWHM), integrating 256 channels coving from 400 nm to 1000 nm. The instrument has a 40-degree field of view (FOV), 0.125 mrad instantaneous field of view (IFOV) and can work in high spectral resolution mode, high spatial resolution mode and high sensitivity mode for different applications, which can adapt to the Velocity to Height Ratio (VHR) lower than 0.04. The integration has been finished, and several airborne flight validation experiments have been conducted. The results showed the system’s excellent performance and high efficiency.


2018 ◽  
Vol 10 (10) ◽  
pp. 1574 ◽  
Author(s):  
Dongsheng Gao ◽  
Zhentao Hu ◽  
Renzhen Ye

Due to sensor limitations, hyperspectral images (HSIs) are acquired by hyperspectral sensors with high-spectral-resolution but low-spatial-resolution. It is difficult for sensors to acquire images with high-spatial-resolution and high-spectral-resolution simultaneously. Hyperspectral image super-resolution tries to enhance the spatial resolution of HSI by software techniques. In recent years, various methods have been proposed to fuse HSI and multispectral image (MSI) from an unmixing or a spectral dictionary perspective. However, these methods extract the spectral information from each image individually, and therefore ignore the cross-correlation between the observed HSI and MSI. It is difficult to achieve high-spatial-resolution while preserving the spatial-spectral consistency between low-resolution HSI and high-resolution HSI. In this paper, a self-dictionary regression based method is proposed to utilize cross-correlation between the observed HSI and MSI. Both the observed low-resolution HSI and MSI are simultaneously considered to estimate the endmember dictionary and the abundance code. To preserve the spectral consistency, the endmember dictionary is extracted by performing a common sparse basis selection on the concatenation of observed HSI and MSI. Then, a consistent constraint is exploited to ensure the spatial consistency between the abundance code of low-resolution HSI and the abundance code of high-resolution HSI. Extensive experiments on three datasets demonstrate that the proposed method outperforms the state-of-the-art methods.


2020 ◽  
Vol 6 (10) ◽  
pp. 100 ◽  
Author(s):  
Muhammad Abir ◽  
Daniel S. Hussey ◽  
Boris Khaykovich

We present and compare the designs of three types of neutron microscopes for high-resolution neutron imaging. Like optical microscopes, and unlike standard neutron imaging instruments, these microscopes have both condenser and image-forming objective optics. The optics are glancing-incidence axisymmetric mirrors and therefore suitable for polychromatic neutron beams. The mirrors are designed to provide a magnification of 10 to achieve a spatial resolution of better than 10 μm. The resolution of the microscopes is determined by the mirrors rather than by the L/Dratio as in conventional pinhole imaging, leading to possible dramatic improvements in the signal rate. We predict the increase in the signal rate by at least two orders of magnitude for very high-resolution imaging, which is always flux limited. Furthermore, in contrast to pinhole imaging, in the microscope, the samples are placed far from the detector to allow for a bulky sample environment without sacrificing spatial resolution.


2021 ◽  
Vol 13 (11) ◽  
pp. 2218
Author(s):  
Weisheng Li ◽  
Minghao Xiang ◽  
Xuesong Liang

In most practical applications of remote sensing images, high-resolution multispectral images are needed. Pansharpening aims to generate high-resolution multispectral (MS) images from the input of high spatial resolution single-band panchromatic (PAN) images and low spatial resolution multispectral images. Inspired by the remarkable results of other researchers in pansharpening based on deep learning, we propose a multilevel dense connection network with a feedback connection. Our network consists of four parts. The first part consists of two identical subnetworks to extract features from PAN and MS images. The second part is a multilevel feature fusion and recovery network, which is used to fuse images in the feature domain and to encode and decode features at different levels so that the network can fully capture different levels of information. The third part is a continuous feedback operation, which refines shallow features by feedback. The fourth part is an image reconstruction network. High-quality images are recovered by making full use of multistage decoding features through dense connections. Experiments on different satellite datasets show that our proposed method is superior to existing methods, through subjective visual evaluation and objective evaluation indicators. Compared with the results of other models, our results achieve significant gains on the multiple objective index values used to measure the spectral quality and spatial details of the generated image, namely spectral angle mapper (SAM), relative global dimensional synthesis error (ERGAS), and structural similarity (SSIM).


2020 ◽  
Vol 12 (17) ◽  
pp. 2804
Author(s):  
Junmin Liu ◽  
Yunqiao Feng ◽  
Changsheng Zhou ◽  
Chunxia Zhang

Pansharpening is a typical image fusion problem, which aims to produce a high resolution multispectral (HRMS) image by integrating a high spatial resolution panchromatic (PAN) image with a low spatial resolution multispectral (MS) image. Prior arts have used either component substitution (CS)-based methods or multiresolution analysis (MRA)-based methods for this propose. Although they are simple and easy to implement, they usually suffer from spatial or spectral distortions and could not fully exploit the spatial and/or spectral information existed in PAN and MS images. By considering their complementary performances and with the goal of combining their advantages, we propose a pansharpening weight network (PWNet) to adaptively average the fusion results obtained by different methods. The proposed PWNet works by learning adaptive weight maps for different CS-based and MRA-based methods through an end-to-end trainable neural network (NN). As a result, the proposed PWN inherits the data adaptability or flexibility of NN, while maintaining the advantages of traditional methods. Extensive experiments on data sets acquired by three different kinds of satellites demonstrate the superiority of the proposed PWNet and its competitiveness with the state-of-the-art methods.


2020 ◽  
Vol 6 (4) ◽  
pp. 20 ◽  
Author(s):  
Naoko Tsukamoto ◽  
Yoshihiro Sugaya ◽  
Shinichiro Omachi

Pansharpening is a method applied for the generation of high-spatial-resolution multi-spectral (MS) images using panchromatic (PAN) and multi-spectral images. A common challenge in pansharpening is to reduce the spectral distortion caused by increasing the resolution. In this paper, we propose a method for reducing the spectral distortion based on the intensity–hue–saturation (IHS) method targeting satellite images. The IHS method improves the resolution of an RGB image by replacing the intensity of the low-resolution RGB image with that of the high-resolution PAN image. The spectral characteristics of the PAN and MS images are different, and this difference may cause spectral distortion in the pansharpened image. Although many solutions for reducing spectral distortion using a modeled spectrum have been proposed, the quality of the outcomes obtained by these approaches depends on the image dataset. In the proposed technique, we model a low-spatial-resolution PAN image according to a relative spectral response graph, and then the corrected intensity is calculated using the model and the observed dataset. Experiments were conducted on three IKONOS datasets, and the results were evaluated using some major quality metrics. This quantitative evaluation demonstrated the stability of the pansharpened images and the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document