habitat gradient
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 19)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anne-Sophie Bonnet-Lebrun ◽  
Thomas Larsen ◽  
Morten Frederiksen ◽  
Derren Fox ◽  
Fabrice le Bouard ◽  
...  

AbstractThe rapidly changing climate in the Arctic is expected to have a major impact on the foraging ecology of seabirds, owing to changes in the distribution and abundance of their prey but also that of competitors (e.g. southerly species expanding their range into the Arctic). Species can respond to interspecific competition by segregating along different niche axes. Here, we studied spatial, temporal and habitat segregation between two closely related seabird species: common guillemot Uria aalge (a temperate species) and Brünnich’s guillemot Uria lomvia (a true Arctic species), at two sympatric sites in Iceland that differ in their total population sizes and the availability of marine habitats. We deployed GPS and temperature-depth recorders to describe foraging locations and behaviour of incubating and chick-rearing adults. We found similar evidence of spatial segregation at the two sites (i.e. independent of population sizes), although segregation in environmental space was only evident at the site with a strong habitat gradient. Unexpectedly, temporal (and, to a limited extent, vertical) segregation appeared only at the least populated site. Overall, our results show complex relationships between the levels of inferred competition and that of segregation.


2021 ◽  
Author(s):  
Eric F Wuesthoff ◽  
Todd K Fuller ◽  
Christopher Sutherland ◽  
Jason M Kamilar ◽  
Rindrahatsarana Ramanankirahina ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Panpim Thongsripong ◽  
James Angus Chandler ◽  
Pattamaporn Kittayapong ◽  
Bruce A. Wilcox ◽  
Durrell D. Kapan ◽  
...  

AbstractHigh-throughput nucleic acid sequencing has greatly accelerated the discovery of viruses in the environment. Mosquitoes, because of their public health importance, are among those organisms whose viromes are being intensively characterized. Despite the deluge of sequence information, our understanding of the major drivers influencing the ecology of mosquito viromes remains limited. Using methods to increase the relative proportion of microbial RNA coupled with RNA-seq we characterize RNA viruses and other symbionts of three mosquito species collected along a rural to urban habitat gradient in Thailand. The full factorial study design allows us to explicitly investigate the relative importance of host species and habitat in structuring viral communities. We found that the pattern of virus presence was defined primarily by host species rather than by geographic locations or habitats. Our result suggests that insect-associated viruses display relatively narrow host ranges but are capable of spreading through a mosquito population at the geographical scale of our study. We also detected various single-celled and multicellular microorganisms such as bacteria, alveolates, fungi, and nematodes. Our study emphasizes the importance of including ecological information in viromic studies in order to gain further insights into viral ecology in systems where host specificity is driving both viral ecology and evolution.


2021 ◽  
Author(s):  
Luca Luiselli ◽  
Daniele Dendi ◽  
Fabio Petrozzi ◽  
Gabriel Hoinsoudé Segniagbeto

Abstract Studies on habitat gradients are particularly interesting for the community ecology theory, but almost no investigation has been carried out on community structure of any vertebrate groups along gradients of habitat that were modified by humans in historical or prehistorical times, such as for instance the Dahomey Gap in West Africa. Here, we analyze the community structure of lizards in suburban Lomé (Togo) and in comparison with nearby savannah and forest sites, with a suite of statistical methods. Overall, we recorded 25 lizard species, with a heavy reduction in species richness from forest (18 taxa) to savannah (13) and suburbs (9). 24% of the species occurred in all habitat types, 40% exclusively in forest, and only two were exclusive of suburban habitats. Suburban habitat types were relatively homogeneous in terms of number of observed species (maximum number of taxa per habitat = 6). There were significant interspecific differences in both substratum type preferences and vertical spatial niche by species, but with no evidence of a nonrandom niche partitioning pattern, and hence with a competitively assembled community structure. There was a nonrandom “clustered” distribution of the various species along the available resource categories, thus indicating that species-specific preferences instead of community-driven mechanisms are more likely to explain the observed patterns. We concluded that lizard communities in tropical cities are (i) less species-rich than in the surrounding more natural habitats, (ii) usually clustered into specific habitat/substratum types (often artificial ones), and (iii) not assembled through competitive interactions.


Author(s):  
Ettore Emanuele Dettori ◽  
Alessandro Balestrieri ◽  
Victor Manuel Zapata-Perez ◽  
Daniel Bruno ◽  
Nuria Rubio-Saura ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Micaela Finney ◽  
Benjamin A. McKenzie ◽  
Bernadette Rabaovola ◽  
Alice Sutcliffe ◽  
Ellen Dotson ◽  
...  

Abstract Background Malaria is a top cause of mortality on the island nation of Madagascar, where many rural communities rely on subsistence agriculture and livestock production. Understanding feeding behaviours of Anopheles in this landscape is crucial for optimizing malaria control and prevention strategies. Previous studies in southeastern Madagascar have shown that Anopheles mosquitoes are more frequently captured within 50 m of livestock. However, it remains unknown whether these mosquitoes preferentially feed on livestock. Here, mosquito blood meal sources and Plasmodium sporozoite rates were determined to evaluate patterns of feeding behaviour in Anopheles spp. and malaria transmission in southeastern Madagascar. Methods Across a habitat gradient in southeastern Madagascar 7762 female Anopheles spp. mosquitoes were collected. Of the captured mosquitoes, 492 were visibly blood fed and morphologically identifiable, and a direct enzyme-linked immunosorbent assay (ELISA) was used to test for swine, cattle, chicken, human, and dog blood among these specimens. Host species identification was confirmed for multiple blood meals using PCR along with Sanger sequencing. Additionally, 1,607 Anopheles spp. were screened for the presence of Plasmodium falciparum, P. vivax-210, and P. vivax 247 circumsporozoites (cs) by ELISA. Results Cattle and swine accounted, respectively, for 51% and 41% of all blood meals, with the remaining 8% split between domesticated animals and humans. Of the 1,607 Anopheles spp. screened for Plasmodium falciparum, Plasmodium vivax 210, and Plasmodium vivax 247 cs-protein, 45 tested positive, the most prevalent being P. vivax 247, followed by P. vivax 210 and P. falciparum. Both variants of P. vivax were observed in secondary vectors, including Anopheles squamosus/cydippis, Anopheles coustani, and unknown Anopheles spp. Furthermore, evidence of coinfection of P. falciparum and P. vivax 210 in Anopheles gambiae sensu lato (s.l.) was found. Conclusions Here, feeding behaviour of Anopheles spp. mosquitoes in southeastern Madagascar was evaluated, in a livestock rich landscape. These findings suggest largely zoophagic feeding behaviors of Anopheles spp., including An. gambiae s.l. and presence of both P. vivax and P. falciparum sporozoites in Anopheles spp. A discordance between P. vivax reports in mosquitoes and humans exists, suggesting high prevalence of P. vivax circulating in vectors in the ecosystem despite low reports of clinical vivax malaria in humans in Madagascar. Vector surveillance of P. vivax may be relevant to malaria control and elimination efforts in Madagascar. At present, the high proportion of livestock blood meals in Madagascar may play a role in buffering (zooprophylaxis) or amplifying (zoopotentiation) the impacts of malaria. With malaria vector control efforts focused on indoor feeding behaviours, complementary approaches, such as endectocide-aided vector control in livestock may be an effective strategy for malaria reduction in Madagascar.


Author(s):  
Oliver Patton ◽  
Veronica Larwood ◽  
Matthew Young

White Sturgeon (Acipenser transmontanus), a species of concern in the San Francisco Estuary, is in relatively low abundance due to a variety of factors. Patton et al. sought identify the estuarine habitat used by White Sturgeon to aid in the conservation and management of the species locally and across its range. By seasonally sampled sub-adult and adult White Sturgeon in the central estuary using setlines across a habitat gradient representative of three primary structural elements, the authors found that the shallow open-water shoal and deep open-water channel habitats were consistently occupied by White Sturgeon in spring, summer, and fall across highly variable water quality conditions, whereas the shallow wetland channel habitat was essentially unoccupied. In summary, sub-adult and adult White Sturgeon inhabit estuaries in at least spring, summer, and fall and small, shallow wetland channels are relatively unoccupied.


2020 ◽  
Vol 24 (6) ◽  
pp. 1031-1043
Author(s):  
Darin J. McNeil ◽  
Christina M. Grozinger

Abstract As evidence for global insect population declines continues to amass, several studies have indicated that Orthoptera (grasshoppers, crickets, and katydids) are among the most threatened insect groups. Understanding Orthoptera populations across large spatial extents requires efficient survey protocols, however, many previously established methods are expensive and/or labor-intensive. One survey method widely employed in wildlife biology, the aural point count, may work well for crickets and katydids (suborder: Ensifera) because males produce conspicuous, species-specific mating calls. We conducted repeated point count surveys across an urban-to-rural gradient in central Pennsylvania. Occupancy analyses of ten focal species indicated that, although detection probability rates varied by species from 0.43 to 0.98, detection rates compounded over five visits such that all focal species achieved cumulative > 0.90. Factors associated with site occupancy varied among species with some positively associated with urbanization (e.g., Greater Anglewing, Microcentrum rhombifolium), some negatively associated with urbanization (e.g., Sword-bearing Conehead, Neoconocephalus ensiger), and others exhibiting constant occupancy across a habitat gradient (e.g., Common True Katydid, Pterophylla camellifolia). Our community-level analysis revealed that different species’ habitat associations interacted such that intermediate levels of urbanization (i.e., suburbs) hosted the highest number of species. Implications for insect conservation Ultimately, our analyses clearly support the concept that aural point counts paired with static occupancy modeling can serve as an important tool for monitoring night-singing Orthoptera populations. Applications of point count surveys by both researchers and citizen scientists may improve our understanding Ensifera populations and help in the global conservation of these threatened insects.


2020 ◽  
Author(s):  
Friederike Clever ◽  
Jade M. Sourisse ◽  
Richard F. Preziosi ◽  
Jonathan A. Eisen ◽  
E. Catalina Rodriguez Guerra ◽  
...  

AbstractEnvironmental degradation has the potential to alter key mutualisms that underline the structure and function of ecological communities. While it is well recognized that the global loss of coral reefs alters fish communities, the effects of habitat degradation on microbial communities associated with fishes remain largely unknown despite their fundamental roles in host nutrition and immunity. Using a gradient of reef degradation, we show that the gut microbiome of a facultative, coral-feeding butterflyfish (Chaetodon capistratus) is significantly more variable among individuals at degraded reefs with very low live coral cover (~0%) than reefs with higher coral cover (~30%), mirroring a known pattern of microbial imbalance observed in immunodeficient humans and other stressed or diseased animals. We demonstrate that fish gut microbiomes on severely degraded reefs have a lower abundance of Endozoicomonas and a higher diversity of anaerobic fermentative bacteria, which suggests a broader and less coral dominated diet. The observed shifts in fish gut bacterial communities across the habitat gradient extend to a small set of potentially beneficial host associated bacteria (i.e., the core microbiome) suggesting essential fish-microbiome interactions are vulnerable to severe coral degradation.


Sign in / Sign up

Export Citation Format

Share Document