scholarly journals Metagenomic shotgun sequencing reveals host species as an important driver of virome composition in mosquitoes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Panpim Thongsripong ◽  
James Angus Chandler ◽  
Pattamaporn Kittayapong ◽  
Bruce A. Wilcox ◽  
Durrell D. Kapan ◽  
...  

AbstractHigh-throughput nucleic acid sequencing has greatly accelerated the discovery of viruses in the environment. Mosquitoes, because of their public health importance, are among those organisms whose viromes are being intensively characterized. Despite the deluge of sequence information, our understanding of the major drivers influencing the ecology of mosquito viromes remains limited. Using methods to increase the relative proportion of microbial RNA coupled with RNA-seq we characterize RNA viruses and other symbionts of three mosquito species collected along a rural to urban habitat gradient in Thailand. The full factorial study design allows us to explicitly investigate the relative importance of host species and habitat in structuring viral communities. We found that the pattern of virus presence was defined primarily by host species rather than by geographic locations or habitats. Our result suggests that insect-associated viruses display relatively narrow host ranges but are capable of spreading through a mosquito population at the geographical scale of our study. We also detected various single-celled and multicellular microorganisms such as bacteria, alveolates, fungi, and nematodes. Our study emphasizes the importance of including ecological information in viromic studies in order to gain further insights into viral ecology in systems where host specificity is driving both viral ecology and evolution.

Author(s):  
Ettore Emanuele Dettori ◽  
Alessandro Balestrieri ◽  
Victor Manuel Zapata-Perez ◽  
Daniel Bruno ◽  
Nuria Rubio-Saura ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2250-2258 ◽  
Author(s):  
Christine M. Cserti ◽  
Walter H. Dzik

In the century since the discovery of the ABO blood groups, numerous associations between ABO groups and disease have been noted. However, the selection pressures defining the ABO distributions remain uncertain. We review published information on Plasmodium falciparum infection and ABO blood groups. DNA sequence information dates the emergence and development of the group O allele to a period of evolution before human migration out of Africa, concomitant with P falciparum's activity. The current geographic distribution of group O is also consistent with a selection pressure by P falciparum in favor of group O individuals in malaria-endemic regions. We critically review clinical reports of ABO and P falciparum infection, documenting a correlation between disease severity and ABO group. Finally, we review published data on the pathogenesis of P falciparum infection, and propose a biologic model to summarize the role of ABO blood groups in cytoadherence biology. Such ABO-related mechanisms also point to a new hypothesis to account for selection of the Le(a−b−) phenotype. Taken together, a broad range of available evidence suggests that the origin, distribution, and relative proportion of ABO blood groups in humans may have been directly influenced by selective genetic pressure from P falciparum infection.


2021 ◽  
Vol 6 (4) ◽  
pp. 176
Author(s):  
Stavroula Beleri ◽  
Georgios Balatsos ◽  
Vasilios Karras ◽  
Nikolaos Tegos ◽  
Fani Sereti ◽  
...  

Seasonal patterns of mosquito population density and their vectorial capacity constitute major elements to understand the epidemiology of mosquito-borne diseases. Using adult mosquito traps, we compared the population dynamics of major mosquito species (Culex pipiens, Aedes albopictus, Anopheles spp.) in an urban and a wetland rural area of Attica Greece. Pools of the captured Cx. pipiens were analyzed to determine infection rates of the West Nile virus (WNV) and the Usutu virus (USUV). The data provided were collected under the frame of the surveillance program carried out in two regional units (RUs) of the Attica region (East Attica and South Sector of Attica), during the period 2017–2018. The entomological surveillance of adult mosquitoes was performed on a weekly basis using a network of BG-sentinel traps (BGs), baited with CO2 and BG-Lure, in selected, fixed sampling sites. A total of 46,726 adult mosquitoes were collected, with larger variety and number of species in East Attica (n = 37,810), followed by the South Sector of Attica (n = 8916). The collected mosquitoes were morphologically identified to species level and evaluated for their public health importance. Collected Cx. pipiens adults were pooled and tested for West Nile virus (WNV) and Usutu virus (USUV) presence by implementation of a targeted molecular methodology (real-time PCR). A total of 366 mosquito pools were analyzed for WNV and USUV, respectively, and 38 (10.4%) positive samples were recorded for WNV, while no positive pool was detected for USUV. The majority of positive samples for WNV were detected in the East Attica region, followed by the South Sector of Attica, respectively. The findings of the current study highlight the WNV circulation in the region of Attica and the concomitant risk for the country, rendering mosquito surveillance actions and integrated mosquito management programs as imperative public health interventions.


2017 ◽  
Vol 108 (2) ◽  
pp. 166-174 ◽  
Author(s):  
A.N. Shriram ◽  
A. Sivan ◽  
A.P. Sugunan

AbstractThe study was undertaken in South Andaman district, comprising three tehsils, viz. Port Blair, Ferrargunj and Little Andaman Tehsils, respectively. Intensive pupal infestation surveys were carried out along the National Highway (NH 223), the main passenger and trade route, referred to as Great Andaman Trunk Road. Sampling locations at every 3 km were geo-referenced with global positioning system unit. A total of 17314 water collections were examined from 29 locations across the South Andaman district, among which 1021 (5.9%) were colonized by immature stages of Aedes albopictus, Aedes aegypti and other mosquito species. Ae. aegypti were found in 12 locations, showing higher infestation in the densely built Aberdeen Bazaar. Breeding populations of Ae. albopictus were observed in 27 sampling locations. Both the species were not recorded in two Northern localities. In the areas where both the species are present, they were often found in the same developmental sites, suggesting convergent habitat selection. The most frequently encountered man-made, artificial and natural developmental sites were fixed cement tanks, plastic drums, plastic cans, metal drums, metal pots, discarded tires, coconut shells, leaf axils and tree holes. Ae. aegypti and Ae. albopictus were observed in varying proportions in Port Blair and Ferrargunj Tehsils, while the former species appeared to be absent in Little Andaman. This study elucidates the spatial distribution of Ae. aegypti and Ae. albopictus with preponderance of the latter species, pointing towards arboviral transmission and assumes public health importance in South Andaman district, endemic for dengue.


mSystems ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Joanne B. Emerson

ABSTRACT As abundant members of microbial communities, viruses impact microbial mortality, carbon and nutrient cycling, and food web dynamics. Although most of our information about viral communities comes from marine systems, evidence is mounting to suggest that viruses are similarly important in soil. Here I outline soil viral metagenomic approaches and the current state of soil viral ecology as a field, and then I highlight existing knowledge gaps that we can begin to fill. We are poised to elucidate soil viral contributions to terrestrial ecosystem processes, considering: the full suite of potential hosts across trophic scales, the ecological impacts of different viral replication strategies, links to economically relevant outcomes like crop productivity, and measurable in situ virus-host population dynamics across spatiotemporal scales and environmental conditions. Soon, we will learn how soil viruses contribute to food webs linked to organic matter decomposition, carbon and nutrient cycling, greenhouse gas emissions, and agricultural productivity.


2009 ◽  
Vol 46 (6) ◽  
pp. 1494-1497 ◽  
Author(s):  
Stephanie L. White ◽  
Michael P. Ward ◽  
Christine M. Budke ◽  
Tracy Cyr ◽  
Rudy Bueno

1989 ◽  
Vol 121 (6) ◽  
pp. 439-443 ◽  
Author(s):  
Carmine A. Lanciani ◽  
Bruce P. Smith

AbstractRecent studies have suggested that the stylostome of parasitic larval water mites of the genus Arrenurus Dugès is a product of the mite, not the host. We tested this hypothesis by comparing stylostomes of the similar species Arrenurus novimarshallae Wilson and Arrenurus pseudotenuicollis Wilson formed in each of two mosquito species, Anopheles crucians Wiedemann and Anopheles quadrimaculatus Say: if the stylostome is produced by the mite, not the host, then stylostome form is likely to be constant in different host species parasitized by the mite.The stylostome of A. pseudotenuicollis is a short, broad, convoluted sac, and stylostomes within the two host species did not differ significantly. The stylostome of A. novimarshallae is a long, thin, convoluted tube, and although it was significantly smaller in A. quadrimaculatus than in A. crucians, its form remained constant. Dark pigment deposits around the stylostome’s attachment point and along the tube may represent host defense that reduces stylostome growth in A. quadrimaculatus. Laboratory-reared A. novimarshallae often die after a brief engorgement period on A. quadrimaculatus but not on A. crucians.Thus, the stylostome of these two mite species has a consistent form in each of two host species, an observation compatible with the hypothesis that the stylostome is a product of the mite. In addition, the ease of distinguishing these two mite species on the basis of stylostome morphology attests to the potential value of the stylostome as a taxonomic character.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 362
Author(s):  
Mohammadreza Sadeghi ◽  
Yuji Tomaru ◽  
Tero Ahola

Increasing sequence information indicates that RNA viruses constitute a major fraction of marine virus assemblages. However, only 12 RNA virus species have been described, infecting known host species of marine single-celled eukaryotes. Eight of these use diatoms as hosts, while four are resident in dinoflagellate, raphidophyte, thraustochytrid, or prasinophyte species. Most of these belong to the order Picornavirales, while two are divergent and fall into the families Alvernaviridae and Reoviridae. However, a very recent study has suggested that there is extraordinary diversity in aquatic RNA viromes, describing thousands of viruses, many of which likely use protist hosts. Thus, RNA viruses are expected to play a major ecological role for marine unicellular eukaryotic hosts. In this review, we describe in detail what has to date been discovered concerning viruses with RNA genomes that infect aquatic unicellular eukaryotes.


Sign in / Sign up

Export Citation Format

Share Document