fish gut
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 63)

H-INDEX

22
(FIVE YEARS 5)

2022 ◽  
Vol 73 ◽  
pp. 121-127
Author(s):  
Gian Marco Luna ◽  
Grazia Marina Quero ◽  
Fotini Kokou ◽  
Konstantinos Kormas

Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 8
Author(s):  
Suzane C. V. das Neves ◽  
Suzianny M. B. C. da Silva ◽  
Gisely K. A. Costa ◽  
Eudes S. Correia ◽  
Alexandre L. Santos ◽  
...  

Organic acids have recently been identified as promising replacements for antibiotics in aquafeeds that promote fish growth and feed efficiency. This study evaluated the inclusion of fumaric acid (FA; 0, 5, 10, 15, 20, and 30 g/kg) in diets (350 g/kg CP; 3.4 kcal digestible energy/g) of Nile tilapia juveniles. Fish (average weight 1.7 ± 0.1 g) were distributed in three 40 L aquaria per treatment (13 fish/aquaria) in a completely randomized design. Over 35 days, the fish received the experimental diets three times daily to apparent satiety. The maximum weight gain, feed efficiency ratio, and protein efficiency ratio were recorded in fish supplemented with 14–15 g/kg FA. After 28 days, Enterobacteriaceae was registered only in the gut of tilapia without FA augmentation. Gram-negative bacteria in the fish gut decreased (p < 0.05) in fish receiving 17 g/kg of dietary FA, increased after this level. The intestinal villi height and width were affected (p < 0.05) by FA levels and feeding time. Thus, inclusion of 15 g/kg of FA was effective in promoting growth, improving intestinal morphometry, and decreasing negative gut bacteria of Nile tilapia juveniles after 35 days.


2021 ◽  
Vol 11 (24) ◽  
pp. 11921
Author(s):  
Chaonan Zhang ◽  
Qiujie Wang ◽  
Shaodan Wang ◽  
Zhengkun Pan ◽  
Di Sun ◽  
...  

Microplastics (MPs), classified as plastic debris less than 5 mm in size, are widely found in various aquatic environments. However, there have been few studies regarding their potential threat under aquaculture conditions. The aim of this study was to investigate the general health, intestinal morphology and microbiota of virgin polypropylene MPs (3–4 mm) on largemouth bass (Micropterus salmoides) over a 28-d exposure period. Four groups were divided according to whether the MPs were added in water or in food. The results disproved the hypothesis that MPs expose may adversely affect the growth of fish. Largemouth bass expelled MPs with minimal harm to the organism. MPs exposure had no significant effect on the community composition or diversity of intestinal microbial, although it could partly influence intestinal morphology, and the recombination process of the intestinal microbial community. Fish may be more sensitive to answer MPs exposure in water than in feed. Proteobacteria could potentially be pathogenic bacteria phylum in fish gut when affected by MPs. This research represents an innovative attempt to investigate the impact of virgin MPs on largemouth bass using a manipulative feeding experiment. The results could provide new insight on commercial fish health when challenged with MPs pollution.


2021 ◽  
Vol 9 (12) ◽  
pp. 2555
Author(s):  
Rosanna Floris ◽  
Gabriele Sanna ◽  
Laura Mura ◽  
Myriam Fiori ◽  
Jacopo Culurgioni ◽  
...  

Fish gut represents a peculiar ecological niche where bacteria can transit and reside to play vital roles by producing bio-compounds with nutritional, immunomodulatory and other functions. This complex microbial ecosystem reflects several factors (environment, feeding regimen, fish species, etc.). The objective of the present study was the identification of intestinal microbial strains able to produce molecules called biosurfactants (BSs), which were tested for surface and antibacterial activity in order to select a group of probiotic bacteria for aquaculture use. Forty-two bacterial isolates from the digestive tracts of twenty Mediterranean grey mullets were screened for testing emulsifying (E-24), surface and antibiotic activities. Fifty percent of bacteria, ascribed to Pseudomonas aeruginosa, Pseudomonas sp., P. putida and P. anguilliseptica, P. stutzeri, P. protegens and Enterobacter ludwigii were found to be surfactant producers. Of the tested strains, 26.6% exhibited an antibacterial activity against Staphylococcus aureus (10.0 ± 0.0–14.5 ± 0.7 inhibition zone), and among them, 23.3% of isolates also showed inhibitory activity vs. Proteus mirabilis (10.0 ± 0.0–18.5 ± 0.7 mm inhibition zone) and 6.6% vs. Klebsiella pneumoniae (11.5 ± 0.7–17.5 ± 0.7 mm inhibition zone). According to preliminary chemical analysis, the bioactive compounds are suggested to be ascribed to the class of glycolipids. This works indicated that fish gut is a source of bioactive compounds which deserves to be explored.


2021 ◽  
Vol 9 (12) ◽  
pp. 2557
Author(s):  
Peng Sun ◽  
Hui Zhang ◽  
Yazhou Jiang ◽  
Quanxin Gao ◽  
Baojun Tang ◽  
...  

The fish-gut microbiota play a key role in the physiology, development, and fitness of its host. An understanding of fish-gut microbial communities and the factors influencing community composition is crucial for improving fish performance. In this study, we compared the gut microbiota of juvenile black sea bream Acanthopagrus schlegelii among habitats: (1) wild, (2) offshore cage-culture, and (3) pond-culture. We also explored the relationships between the gut microbiota and host-associated environmental factors. Gut samples and associated environmental compartments were investigated using 16S rRNA gene sequencing. Our results revealed significant habitat-specific differences among the gut microbiota of juvenile A. schlegelii. Wild populations of juvenile A. schlegelii had more diverse gut microbiota than populations cultured in pond habitats due to their omnivorous feeding habits and the corresponding abundance of natural food resources. Significant variations in the composition, core taxa, and diversity of the microbiota were also found between the gut and the environmental compartments. However, no significant differences were observed among the microbiota of the environmental compartments in the relatively isolated pond habitat. Source tracking analysis recovered connections between the fish-gut microbiota and the diet, water and sediment environmental compartments. This connection was especially strong between the microbiota of the fish gut and that of the diet in the pond habitat: the diet microbiota accounted for 33.48 ± 0.21% of the gut microbiota. Results suggested that all A. schlegelii shared a core gut microbiota, regardless of differences in diet and habitat. However, environmental factors associated with both diet and habitat contributed to the significant differences between the gut microbiota of fish living in different habitats. To the authors’ knowledge, this study presents the first comparison of gut microbiota among juvenile A. schlegelii with different diets and habitats. These findings enrich our understanding of the gut microbiota of A. schlegelii and help to clarify the interaction between gut microbiota and environmental factors. Our results may also help to guide and improve fish ecological fitness via the regulation of gut microbiota, thereby increasing the efficacy of stock enhancement programs for this species.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yale Deng ◽  
Fotini Kokou ◽  
Ep H. Eding ◽  
Marc C. J. Verdegem

Abstract Background Fish gut microbial colonisation starts during larval stage and plays an important role in host’s growth and health. To what extent first colonisation could influence the gut microbiome succession and growth in later life remains unknown. In this study, Nile tilapia embryos were incubated in two different environments, a flow-through system (FTS) and a biofloc system (BFS); hatched larvae were subsequently cultured in the systems for 14 days of feeding (dof). Fish were then transferred to one common recirculating aquaculture system (RAS1, common garden, 15–62 dof), followed by a growth trial in another RAS (RAS2, growth trial, 63–105 dof). In RAS2, fish were fed with two types of diet, differing in non-starch polysaccharide content. Our aim was to test the effect of rearing environment on the gut microbiome development, nutrient digestibility and growth performance of Nile tilapia during post-larvae stages. Results Larvae cultured in the BFS showed better growth and different gut microbiome, compared to FTS. After the common garden, the gut microbiome still showed differences in species composition, while body weight was similar. Long-term effects of early life rearing history on fish gut microbiome composition, nutrient digestibility, nitrogen and energy balances were not observed. Still, BFS-reared fish had more gut microbial interactions than FTS-reared fish. A temporal effect was observed in gut microbiome succession during fish development, although a distinct number of core microbiome remained present throughout the experimental period. Conclusion Our results indicated that the legacy effect of first microbial colonisation of the fish gut gradually disappeared during host development, with no differences in gut microbiome composition and growth performance observed in later life after culture in a common environment. However, early life exposure of larvae to biofloc consistently increased the microbial interactions in the gut of juvenile Nile tilapia and might possibly benefit gut health.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chengjie Shan ◽  
Miao Li ◽  
Zhu Liu ◽  
Rong Xu ◽  
Fang Qiao ◽  
...  

Probiotic administration is a potential strategy against enteric pathogen infection in either clinical treatment or animal nutrition industry, but the administration duration of probiotics varied and the underlying mechanisms remain unclear. A strain (YC) affiliated to Pediococcus pentosaceus, a commonly used probiotic, was isolated from fish gut and the potential role of YC against Aeromonas hydrophila was detected in zebrafish. We found that 3- or 4-week YC administration (YC3W or YC4W) increased the resistance against A. hydrophila while 1- or 2-week treatment (YC1W or YC2W) did not. To determine the possible reason, intestinal microbiota analysis and RNAseq were conducted. The results showed that compared with CON and YC1W, YC4W significantly increased the abundance of short-chain fatty acids (SCFAs) producing bacteria and elevated the gene expression of nlrp3. Higher butyrate content and enhanced expression of IL1β were subsequently found in YC4W. To identify the causal relationship between butyrate and the higher pathogen resistance, different concentrations of sodium butyrate (SB) were supplemented. The results suggested that 10 mmol/kg SB addition mirrored the protective effect of YC4W by increasing the production of IL-1β. Furthermore, the increased IL-1β raised the percentage of intestinal neutrophils, which endued the zebrafish with A. hydrophila resistance. In vivo knockdown of intestinal il1b eliminated the anti-infection effect. Collectively, our data suggested that the molecular mechanism of probiotics determined the administration duration, which is vital for the efficiency of probiotics. Promoting host inflammation by probiotic pretreatment is one potential way for probiotics to provide their protective effects against pathogens.


2021 ◽  
pp. 118908
Author(s):  
Rossella di Guida ◽  
Angela Casillo ◽  
Antonietta Stellavato ◽  
Soichiro Kawai ◽  
Takuya Ogawa ◽  
...  

2021 ◽  
Author(s):  
Sonnia Nzilani Musyoka ◽  
Rita Nairuti

Semi-intensive aquaculture using ponds is among the most common practices of fish production, whose output depends highly on the ponds’ natural primary productivity. With the increased sustainability and health concerns with artificial fish feeds and chemical fertilizers, organic manure has been credited as a cheap, safe and sustainable alternative source of aquaculture nutrition. Apart from supplying nutrients to the phytoplankton, organic manures supply food directly to zooplankton and fish, provide substrate for microbes and improve water and pond sediment quality. Vermicompost fertilizer (excrete of earthworms) has been recognized as a potential pond fertilizer because it has superior nutritional quality (of up to five times), contains microbes, and is in ready-for-uptake form. Besides, the vermicompost contains humic acid, which has antibiotic properties, and promotes fish gut health, stress management, and immune systems. Nonetheless, the application of vermicompost fertilizer in aquaculture is still not a common practice. Therefore, this study reviews the concept of vermiculture vis-à-vis pond fertilization and the various utilizations of the vermicompost in fish farming. This is to enable fish farmers to make an informed decision on identifying and selecting proper biofertilizer, which can increase yields and cut costs of production, thus maximizing profits and improving resource utilization.


Sign in / Sign up

Export Citation Format

Share Document