scholarly journals The impact of large and small dams on malaria transmission in four basins in Africa

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Solomon Kibret ◽  
Matthew McCartney ◽  
Jonathan Lautze ◽  
Luxon Nhamo ◽  
Guiyun Yan

AbstractExpansion of various types of water infrastructure is critical to water security in Africa. To date, analysis of adverse disease impacts has focused mainly on large dams. The aim of this study was to examine the effect of both small and large dams on malaria in four river basins in sub-Saharan Africa (i.e., the Limpopo, Omo-Turkana, Volta and Zambezi river basins). The European Commission’s Joint Research Center (JRC) Yearly Water Classification History v1.0 data set was used to identify water bodies in each of the basins. Annual malaria incidence data were obtained from the Malaria Atlas Project (MAP) database for the years 2000, 2005, 2010 and 2015. A total of 4907 small dams and 258 large dams in the four basins, with 14.7million people living close (< 5 km) to their reservoirs in 2015, were analysed. The annual number of malaria cases attributable to dams of either size across the four basins was 0.9–1.7 million depending on the year, of which between 77 and 85% was due to small dams. The majority of these cases occur in areas of stable transmission. Malaria incidence per kilometre of reservoir shoreline varied between years but for small dams was typically 2–7 times greater than that for large dams in the same basin. Between 2000 and 2015, the annual malaria incidence showed a broadly declining trend for both large and small dam reservoirs in areas of stable transmission in all four basins. In conclusion, the malaria impact of dams is far greater than previously recognized. Small and large dams represent hotspots of malaria transmission and, as such, should be a critical focus of future disease control efforts.

2021 ◽  
Author(s):  
Peter Onyango Sangoro ◽  
Ulrike Fillinger ◽  
Kochelani Saili ◽  
Theresia Estomih Nkya ◽  
Rose Marubu ◽  
...  

Abstract Background: Concerted effort to control malaria has had a substantial impact on transmission of the disease in the past two decades. In areas where reduced malaria transmission is being sustained through insecticide-based vector control interventions, primarily long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), non-insecticidal complementary tools will likely be needed to push towards malaria elimination. Once interruption in local disease transmission is achieved, insecticide-based measures can be scaled down gradually and eventually phased out, saving on costs of sustaining control programmes and mitigating any unintended negative health and environmental impacts posed by insecticides. These non-insecticidal methods could eventually replace insecticidal methods of vector control. House screening, a non-insecticidal method, has a long history in malaria control, but is still not widely adopted in sub-Saharan Africa. This study aims to add to the evidence-base for this intervention in low transmission settings by assessing the efficacy, impact and feasibility of house screening in areas where LLINs are conventionally used for malaria control. Methods: A two-armed, household randomized clinical trial will be conducted in Mozambique, Zambia and Zimbabwe to evaluate whether combined use of house screens and LLINs affords better protection against clinical malaria in children between 6 months and 13 years compared to the sole use of LLINs. Eight hundred households will be enrolled in each study area, where 400 households will be randomly assigned the intervention, house screening and LLINs while the control households will be provided with LLINs only. Clinical malaria incidence will be estimated by actively following up one child from each household for 6 months over the malaria transmission season. Cross-sectional parasite prevalence will be estimated by testing all participating children for malaria parasites at the beginning and end of each transmission season using rapid diagnostic tests.CDC light traps and pyrethrum spray catches (PSC) will be used to sample adult mosquitoes and evaluate the impact of house screening on indoor mosquito density, species distribution and sporozoite rates.Discussion: This study will contribute epidemiological data on the impact of house screening on malaria transmission and assess the feasibility of its implementation on a programmatic scale. Trial registration: This trial was retrospectively registered on 11th August 2020. Registration number PACTR202008524310568.


2018 ◽  
Vol 10 (1) ◽  
pp. 88-100 ◽  
Author(s):  
Gbenga J. Abiodun ◽  
Peter J. Witbooi ◽  
Kazeem O. Okosun ◽  
Rajendra Maharaj

Introduction: The reasons for malaria resurgence mostly in Africa are yet to be well understood. Although the causes are often linked to regional climate change, it is important to understand the impact of climate variability on the dynamics of the disease. However, this is almost impossible without adequate long-term malaria data over the study areas. Methods: In this study, we develop a climate-based mosquito-human malaria model to study malaria dynamics in the human population over KwaZulu-Natal, one of the epidemic provinces in South Africa, from 1970-2005. We compare the model output with available observed monthly malaria cases over the province from September 1999 to December 2003. We further use the model outputs to explore the relationship between the climate variables (rainfall and temperature) and malaria incidence over the province using principal component analysis, wavelet power spectrum and wavelet coherence analysis. The model produces a reasonable fit with the observed data and in particular, it captures all the spikes in malaria prevalence. Results: Our results highlight the importance of climate factors on malaria transmission and show the seasonality of malaria epidemics over the province. Results from the principal component analyses further suggest that, there are two principal factors associated with climates variables and the model outputs. One of the factors indicate high loadings on Susceptible, Exposed and Infected human, while the other is more correlated with Susceptible and Recovered humans. However, both factors reveal the inverse correlation between Susceptible-Infected and Susceptible-Recovered humans respectively. Through the spectrum analysis, we notice a strong annual cycle of malaria incidence over the province and ascertain a dominant of one year periodicity. Consequently, our findings indicate that an average of 0 to 120-day lag is generally noted over the study period, but the 120-day lag is more associated with temperature than rainfall. This is consistence with other results obtained from our analyses that malaria transmission is more tightly coupled with temperature than with rainfall in KwaZulu-Natal province.


2021 ◽  
Author(s):  
Anne L Wilson ◽  
Steve W Lindsay ◽  
Alfred Tiono ◽  
Jean Baptiste Yaro ◽  
Hilary Ranson ◽  
...  

Abstract Background Burkina Faso has one of the highest malaria burdens in sub-Saharan Africa despite the mass deployment of insecticide-treated nets (ITNs) and use of seasonal malaria chemoprevention (SMC) in children aged up to 5 years. Identification of risk factors for Plasmodium falciparum infection in rural Burkina Faso could help to identify and target malaria control measures. Methods A cross-sectional survey of 1,199 children and adults was conducted during the peak malaria transmission season in south-west Burkina Faso in 2017. Logistic regression was used to identify risk factors for microscopically confirmed P. falciparum infection. A malaria transmission dynamic model was used to determine the impact on malaria cases averted of administering SMC to children aged 5–15 year old. Results P. falciparum prevalence was 32.8% in the study population. Children aged 5 to < 10 years old were at 3.74 times the odds (95% CI = 2.68–5.22, p < 0.001) and children aged 10 to 15 years old at 3.14 times the odds (95% CI = 1.20–8.21, p = 0.02) of P. falciparum infection compared to children aged less than 5 years old. Administration of SMC to children aged up to 10 years is predicted to avert an additional 57 malaria cases per 1000 population per year (9.4% reduction) and administration to children aged up to 15 years would avert an additional 89 malaria cases per 1000 population per year (14.6% reduction) in the Cascades Region, assuming coverage of pyrethroid-piperonyl butoxide ITNs. Conclusion Malaria infections were high in all age strata, although highest in children aged 5 to 15 years, despite roll out of core malaria control interventions. Given the burden of infection in school-age children, extension of the eligibility criteria for SMC could help reduce the burden of malaria in Burkina Faso and other countries in the region.


2017 ◽  
Vol 114 (52) ◽  
pp. E11267-E11275 ◽  
Author(s):  
Hmooda Toto Kafy ◽  
Bashir Adam Ismail ◽  
Abraham Peter Mnzava ◽  
Jonathan Lines ◽  
Mogahid Shiekh Eldin Abdin ◽  
...  

Insecticide-based interventions have contributed to ∼78% of the reduction in the malaria burden in sub-Saharan Africa since 2000. Insecticide resistance in malaria vectors could presage a catastrophic rebound in disease incidence and mortality. A major impediment to the implementation of insecticide resistance management strategies is that evidence of the impact of resistance on malaria disease burden is limited. A cluster randomized trial was conducted in Sudan with pyrethroid-resistant and carbamate-susceptible malaria vectors. Clusters were randomly allocated to receive either long-lasting insecticidal nets (LLINs) alone or LLINs in combination with indoor residual spraying (IRS) with a pyrethroid (deltamethrin) insecticide in the first year and a carbamate (bendiocarb) insecticide in the two subsequent years. Malaria incidence was monitored for 3 y through active case detection in cohorts of children aged 1 to <10 y. When deltamethrin was used for IRS, incidence rates in the LLIN + IRS arm and the LLIN-only arm were similar, with the IRS providing no additional protection [incidence rate ratio (IRR) = 1.0 (95% confidence interval [CI]: 0.36–3.0; P = 0.96)]. When bendiocarb was used for IRS, there was some evidence of additional protection [interaction IRR = 0.55 (95% CI: 0.40–0.76; P < 0.001)]. In conclusion, pyrethroid resistance may have had an impact on pyrethroid-based IRS. The study was not designed to assess whether resistance had an impact on LLINs. These data alone should not be used as the basis for any policy change in vector control interventions.


2000 ◽  
Vol 38 (1) ◽  
pp. 21-39 ◽  
Author(s):  
Zeric Kay Smith

This article provides an empirical test of a set of common theoretical assumptions concerning the relationship between political liberalisation, democratisation and ethnic conflict in Africa. The theory in question posits that liberalisation will result in short-term increases in ethnic conflict and that democratisation will be followed by a decrease in ethnic conflict. The article employs a cross-national and time sensitive data set to test this hypothesis in the context of contemporary sub-Saharan Africa. A compelling benefit of this methodology is that it allows for an explanation of variation in ethnic conflict both across states and over time.The results indicate that the relationship between political liberalisation and ethnic conflict is the reverse of what the common assumptions would predict. Liberalisation has had an inverse relationship to ethnic conflict in sub-Saharan Africa between 1988 and 1997. Democratisation does not have the hypothesised effect even when lagged variables are employed. Structural variables as represented by GDP per capita and infant mortality rates are also systematically related to ethnic conflict. The author concludes that policy makers and analysts should continue to pursue both liberalisation and democratisation but should not neglect the central role of an adequate resource base in reducing ethnic conflict in Africa. Political liberalisation and democratic institutions, while providing some measure of relief, are by no means silver bullets for the difficult challenges posed by ethnic conflict in Africa.


2020 ◽  
Author(s):  
Mebrate Dufera ◽  
Oljira Kenea ◽  
Geleta Tadele

Abstract Background: Malaria is one of the most important causes of morbidity and mortality in sub-Saharan Africa including Ethiopia. About 75% of the total area of the country is an area of malaria transmission and an estimated 68% of the Ethiopian population is at risk from malaria. Therfore, this study was aimed to evaluate local malaria incidence and associated risk factors in and around Anger Gute town, East Wollega Zone,Oromia Regional State, Western Ethiopia. Methods: Health-facility based cross-sectional study was carried out from June to December 2018. 462 malaria suspected patients attending three health posts and one health center were included in the study. Data were collected using structured questionnaire and laboratory diagnosis of malaria. Data analysis was performed using SPSS version 20.0 for windows. Logistic regression was used to examine the effect of each independent variable on incidence of malaria. P values of less or equal to 0.05 were considered significant. Results : Of 462 malaria suspected cases, 122 (26.4%) had Plasmodium infection which was confirmed by microscopy or RDT. 64.75 %, 32 % and 3.75% of malaria was caused by P. falciparum, P. vivax and mixed infections respectively. Malaria incidence in and around Anger Gute town from June to December 2018 was found to be 0.343 % (122/ 35, 585). No significant difference in incidence of malaria was found by sex and age categories of study participants (P>0.05). Incidence of malaria was significantly lower in urban kebeles compared to rural kebeles (COR= 0.359, P=0.00). Incidence of malaria was significantly associated with presence of stagnant water nearby living house (AOD=186.3, P=0.000), utilization of bed net (AOD=0.08, P=0.000), and IRS (AOD=0.056,P=0.03). Six years malaria trend analysis at Anger Gute Health Center showed that number of confirmed malaria cases was significantly decreased in 2014 - 2018 as compared to 2013. Since 2014; numbers of confirmed malaria cases have been more or less constant in Anger Gute health center. Conclusions: Incidence of malaria in and around Anger Gute town was 3.43 per 1000 population at risk of the disease during the study period and was lower than recent incidence of malaria reported from Ethiopia. Trend analysis of malaria from 2014 to 2018 indicated nearly unchanged numbers of malaria cases. This shows presence of low sustained malaria transmission. Integrated vector control efforts are needed to suppress transmission that lead to elimination of the disease in the study setting. Key words: Anger Gute, malaria, malaria incidence


Author(s):  
Omotomiwa Adenubi ◽  
Omphile Temoso ◽  
Isiaka Abdulaleem

Background: A recent increase in the adoption of mobile phone technology generated a great deal of interest and optimism regarding its effect on economic development in sub-Saharan Africa (SSA), particularly on the enhancement of agricultural development.Aim: In this study the impact of mobile phone technology on agricultural productivity in SSA is examined.Setting: The empirical assessment uses a panel data set covering 41 countries over a period of 25 years.Methods: We employed an econometric approach and panel data covering 41 countries and a 25 year-period (1990–2014) to investigate the effect of the adoption of mobile phone technology and other socio-economic variables on agricultural total factor productivity (TFP). The use of regression analyses allowed us to estimate and measure the contribution of certain variables to agricultural TFP growth in SSA.Results: The results show that the uptake of mobile phone technology had a positive effect on agricultural TFP growth in SSA.Conclusion: Mobile phone technology has been established to be one of the drivers of agricultural productivity in SSA.Implication: The implications of this study are that governments, NGOs, and businesses working on improving agricultural productivity and food security in SSA need to continue endorsing mobile technology as a means to improve agricultural productivity.


2020 ◽  
Author(s):  
Benyun Shi ◽  
Jinxin Zheng ◽  
Shang Xia ◽  
Shan Lin ◽  
Xinyi Wang ◽  
...  

Abstract Background: The COVID-19 pandemic has caused substantial disruptions to health services in the low and middle-income countries with a high burden of other diseases, such as malaria in sub-Saharan Africa. As the COVID-19 pandemic spread to Africa, there is an urgent need to assess the impact of COVID-19 pandemic on malaria transmission potential in malaria-endemic countries in Africa.Methods: We present a data-driven method to quantify the extent to which the COVID-19 pandemic, as well as various non-pharmaceutical interventions (NPIs), could lead to the change of malaria transmission potential in 2020. First, we adopt a particle Markov Chain Monte Carlo method to estimate epidemiological parameters in each country by fitting the time series of the cumulative number of COVID-19 cases. Then, we simulate the epidemic dynamics of COVID-19 under two groups of NPIs: (i) contact restriction and social distancing, and (ii) early identification and isolation of cases. Based on the simulated epidemic curves, we quantify the impact of COVID-19 epidemic and NPIs on the distribution of insecticide-treated nets (ITNs). Finally, by treating the total number of ITNs available in each country in 2020, we evaluate the negative effects of COVID-19 pandemic on malaria transmission potential based on the notion of vectorial capacity.Results: We conduct case studies in four malaria-endemic countries, Ethiopia, Nigeria, Tanzania, and Zambia, in Africa. The epidemiological parameters (i.e., the basic reproduction number R0 and the duration of infection DI ) of COVID-19 in each country are estimated as follows: Ethiopia (R0 = 1:57, DI = 5:32), Nigeria (R0 = 2:18, DI = 6:58), Tanzania (R0 = 2:47, DI = 6:01), and Zambia (R0 = 2:12, DI = 6:96). Based on the estimated epidemiological parameters, the epidemic curves simulated under various NPIs indicated that the earlier the interventions are implemented, the better the epidemic is controlled. Moreover, the effect of combined NPIs is better than contact restriction and social distancing only. By treating the total number of ITNs available in each country in 2020 as a baseline, our results show that even with stringent NPIs, malaria transmission potential will remain higher than expected in the second half of 2020.Conclusions: By quantifying the impact of various NPI response to the COVID-19 pandemic on malaria transmission potential, this study provides a way to jointly address the syndemic between COVID-19 and malaria in malaria-endemic countries in Africa. The results suggest that the early intervention of COVID-19 can effectively reduce the scale of the epidemic and mitigate its impact on malaria transmission potential.


2019 ◽  
Vol 9 (4) ◽  
pp. 415-431 ◽  
Author(s):  
Tawiah Kwatekwei Quartey-Papafio ◽  
Sifeng Liu ◽  
Sara Javed

Purpose The rise in malaria deaths discloses a decline of global malaria eradication that shows that control measures and fund distribution have missed its right of way. Therefore, the purpose of this paper is to study and evaluate the impact and control of malaria on the independent states of the Sub-Saharan African (SSA) region over the time period of 2010–2017 using Deng’s Grey incidence analysis, absolute degree GIA and second synthetic degree GIA model. Design/methodology/approach The purposive data sampling is a secondary data from World Developmental Indicators indicating the incidence of new malaria cases (per 1,000 population at risk) for 45 independent states in SSA. GIA models were applied on array sequences into a single relational grade for ranking to be obtained and analyzed to evaluate trend over a predicted period. Findings Grey relational analysis classifies West Africa as the highly infectious region of malaria incidence having Burkina Faso, Sierra Leone, Ghana, Benin, Liberia and Gambia suffering severely. Also, results indicate Southern Africa to be the least of all affected in the African belt that includes Eswatini, Namibia, Botswana, South Africa and Mozambique. But, predictions revealed that the infection rate is expected to fall in West Africa, whereas the least vulnerable countries will experience a rise in malaria incidence through to the next ten years. Therefore, this study draws the attention of all stakeholders and interest groups to adopt effective policies to fight malaria. Originality/value The study is a pioneer to unravel the most vulnerable countries in the SSA region as far as the incidence of new malaria cases is a concern through the use of second synthetic GIA model. The outcome of the study is substantial to direct research funds to control and eliminate malaria.


Sign in / Sign up

Export Citation Format

Share Document