minimum latency
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 36)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Vol 10 (4) ◽  
pp. 1-25
Author(s):  
Sundarakumar M. R. ◽  
Mahadevan G. ◽  
Ramasubbareddy Somula ◽  
Sankar Sennan ◽  
Bharat S. Rawal

Big Data Analytics is an innovative approach for extracting the data from a huge volume of data warehouse systems. It reveals the method to compress the high volume of data into clusters by MapReduce and HDFS. However, the data processing has taken more time for extract and store in Hadoop clusters. The proposed system deals with the challenges of time delay in shuffle phase of map-reduce due to scheduling and sequencing. For improving the speed of big data, this proposed work using the Compressed Elastic Search Index (CESI) and MapReduce-Based Next Generation Sequencing Approach (MRBNGSA). This approach helps to increase the speed of data retrieval from HDFS clusters because of the way it is stored in that. this method is stored only the metadata in HDFS which takes less memory during runtime compare to big data due to the volume of data stored in HDFS. This approach is reduces the CPU utilization and memory allocation of the resource manager in Hadoop Framework and imroves data processing speed, such a way that time delay has to be reduced with minimum latency.


2021 ◽  
Vol 10 (4) ◽  
pp. 0-0

Big Data Analytics is an innovative approach for extracting the data from a huge volume of data warehouse systems. It reveals the method to compress the high volume of data into clusters by MapReduce and HDFS. However, the data processing has taken more time for extract and store in Hadoop clusters. The proposed system deals with the challenges of time delay in shuffle phase of map-reduce due to scheduling and sequencing. For improving the speed of big data, this proposed work using the Compressed Elastic Search Index (CESI) and MapReduce-Based Next Generation Sequencing Approach (MRBNGSA). This approach helps to increase the speed of data retrieval from HDFS clusters because of the way it is stored in that. this method is stored only the metadata in HDFS which takes less memory during runtime compare to big data due to the volume of data stored in HDFS. This approach is reduces the CPU utilization and memory allocation of the resource manager in Hadoop Framework and imroves data processing speed, such a way that time delay has to be reduced with minimum latency.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-34
Author(s):  
Quan Chen ◽  
Zhipeng Cai ◽  
Lianglun Cheng ◽  
Hong Gao ◽  
Jianzhong Li

The emerging energy-harvesting technology enables charging sensor batteries with renewable energy sources, which has been effectively integrated into Wireless Sensor Networks (EH-WSNs). Due to the limited energy-harvesting capacities of tiny sensors, the captured energy remains scarce and differs greatly among nodes, which makes the data aggregation scheduling problem more challenging than that in energy-abundant WSNs. In this article, we investigate the Minimum Latency Aggregation Scheduling (MLAS) problem in EH-WSNs. First, we identify a new kind of collision in EH-WSNs, named as energy-collision, and design several special structures to avoid it during data aggregation. To reduce the latency, we try to choose the parent adaptively according to nodes’ transmission tasks and energy-harvesting ability, under the consideration of collisions avoidance. By considering transmitting time, residual energy, and energy-collision, three scheduling algorithms are proposed under protocol interference model. Under physical interference model, several approximate algorithms are also designed by taking account of the interference from the nodes several hops away. Finally, the theoretical analysis and simulation results verify that the proposed algorithms have high performance in terms of latency.


2021 ◽  
pp. 107543
Author(s):  
Samaneh Daroudi ◽  
Hamed Kazemipoor ◽  
Esmaeel Najafi ◽  
Mohammad Fallah

Author(s):  
Subhadeep Banik ◽  
Takanori Isobe ◽  
Fukang Liu ◽  
Kazuhiko Minematsu ◽  
Kosei Sakamoto

We present Orthros, a 128-bit block pseudorandom function. It is designed with primary focus on latency of fully unrolled circuits. For this purpose, we adopt a parallel structure comprising two keyed permutations. The round function of each permutation is similar to Midori, a low-energy block cipher, however we thoroughly revise it to reduce latency, and introduce different rounds to significantly improve cryptographic strength in a small number of rounds. We provide a comprehensive, dedicated security analysis. For hardware implementation, Orthros achieves the lowest latency among the state-of-the-art low-latency primitives. For example, using the STM 90nm library, Orthros achieves a minimum latency of around 2.4 ns, while other constructions like PRINCE, Midori-128 and QARMA9-128- σ0 achieve 2.56 ns, 4.10 ns, 4.38 ns respectively.


Biomimetics ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 14
Author(s):  
Andrea Biscarini

The values of a physiological parameter and its time derivatives, detected at different times by different sensory receptors, are processed by the sensorimotor system to predict the time evolution of the parameter and convey appropriate control commands acting with minimum latency (few milliseconds) from the sensory stimulus. We have derived a power-series expansion (U-expansion) to simulate the fast prediction strategy of the sensorimotor system. Given a time-function , a time-instant , and a time-increment , the U-expansion enables the calculation of from and the values of the derivatives of at arbitrarily different times , instead of time as in the Taylor series. For increments significantly greater than the maximum among the differences , the error associated with truncation of the U-expansion at a given order closely equalizes the error of the corresponding Taylor series () truncated at the same order. Small values of and higher values of correspond to the high-frequency discharge of sensory neurons and the need for longer-term prediction, respectively. Taking inspiration from the sensorimotor system, the U-expansion can potentially provide an analytical background for the development of algorithms designed for the fast and accurate feedback control of nonlinear systems.


2020 ◽  
pp. 1-16
Author(s):  
Imran ◽  
Shabir Ahmad ◽  
Do Hyeun Kim

Mountains are attraction spots for tourists, and tourism contributes to the country’s gross domestic product. Mountains have many benefits such as biodiversity, tourism, and the supplication of food, to name a few. However, there are challenges to protect mountain lives from hazards such as fire caused by tourist activities in mountains. The in-time fire detection and notification to the authorities have always been the central point in literature studies, and different studies have been carried out to optimize the notification time. In this paper, we model the fire detection and notification as a real-time internet of things application and uses task orchestration and task scheduling mechanism to provide scalability along with optimal latency. The proposed fire detection and prediction mechanism detect mountain fire at the earliest stage and provide predictive analysis to prevent damage to mountain life and tourists. The architecture is based on microservice-based IoT task orchestration mechanism and device virtualization, which is not only lightweight but also handles a single problem in parallel chunks, thus optimizes the latency. The in-time information about the fire is used for predictive analysis and notified to safety authorities which helps them to make a more informed decisions to minimize the damage caused by mountain fire. The performance of the proposed mechanism is evaluated in terms of different measures such as RMSE, MAPE, MSE, and MAPE. The proposed work approaches the fire detection and notification as a collection of tasks, and thus those tasks are selected for deployment which are guaranteed to be executed and have minimum latency. This idea of pre-planing the latency and task execution is the first attempt to the best of the authors’ knowledge.


Sign in / Sign up

Export Citation Format

Share Document