Dynamically tunable plasmon-induced transparency effect based on graphene metasurfaces

Author(s):  
Shuxian Chen ◽  
Junyi Li ◽  
Zicong Guo ◽  
Li Chen ◽  
Kunhua Wen ◽  
...  

Abstract Plasmon-induced transparency (PIT) is theoretically explored with a graphene metamaterial using finite-difference time-domain numerical simulations and coupled-mode-theory theoretical analysis. In this work, the proposed structure is consisted of one rectangular cavity and three strips to generate the PIT phenomenon. The PIT window can be regulated dynamically by adjusting the Fermi level of the graphene. Importantly, the modulation depth of the amplitude can reach 90.4%. The refractive index sensitivity of the PIT window is also investigated, and the simulation result shows that a sensitivity of 1.335 THz/RIU is achieved. Additionally, when the polarization angle of the incident light is changed gradually from 0˚ to 90˚, the performances of the structure are greatly affected. Finally, the proposed structure is particularly enlightening for the design of dynamically tuned terahertz devices.

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Zhimin Liu ◽  
Enduo Gao ◽  
Zhenbin Zhang ◽  
Hongjian Li ◽  
Hui Xu ◽  
...  

AbstractThe plasmon-induced transparency (PIT), which is destructive interference between the superradiation mode and the subradiation mode, is studied in patterned graphene-based terahertz metasurface composed of graphene ribbons and graphene strips. As the results of finite-difference time-domain (FDTD) simulation and coupled-mode theory (CMT) fitting, the PIT can be dynamically modulated by the dual-mode. The left (right) transmission dip is mainly tailored by the gate voltage applied to graphene ribbons (stripes), respectively, meaning a dual-mode on-to-off modulator is realized. Surprisingly, an absorbance of 50% and slow-light property of 0.7 ps are also achieved, demonstrating the proposed PIT metasurface has important applications in absorption and slow-light. In addition, coupling effects between the graphene ribbons and the graphene strips in PIT metasurface with different structural parameters also are studied in detail. Thus, the proposed structure provides a new basis for the dual-mode on-to-off multi-function modulators.


Author(s):  
Yuhui Li ◽  
Yiping Xu ◽  
Jiabao Jiang ◽  
Liyong Ren ◽  
Shubo Cheng ◽  
...  

Abstract A monolayer graphene metamaterial composed of a graphene block and four graphene strips, which has the metal-like properties in terahertz frequency range, is proposed to generate an outstanding quadruple plasmon-induced transparency (PIT). Additional analyses show that the forming physical mechanism of the PIT with four transparency windows can be explained by strong destructive interference between the bright mode and the dark mode, and the distributions of electric field intensity and electric field vectors under the irradiation of the incident light. Coupled mode theory (CMT) and finite-difference time-domain (FDTD) method are employed to study the spectral response characteristics of the proposed structure, and the theoretical and simulated results are in good agreement. It is found that a tunable multi-frequency switch and excellent optical storage can be achieved in the wide PIT window. The maximum modulation depth is up to 99.7%, which corresponds to the maximum extinction ratio of 25.04 dB and the minimum insertion loss of 0.19 dB. In addition, the time delay is as high as 0.919 ps, the corresponding group refractive index is up to 2755. Thus, the proposed structure provides a new method for the design of terahertz multi-frequency switches and slow light devices.


2021 ◽  
Vol 894 ◽  
pp. 13-20
Author(s):  
Yu Zhe Li

Terahertz technology can be used in sensing and communication applications. We designed a polarization-sensitive photodetector specially for Terahertz frequency based on cross-shaped graphene sheet. The shaped graphene excites localized surface plasmon which can enhance the absorption of incident light. From the Finite Difference Time Domain Solutions (FDTD), we figured out that transmission of incident light relates to the size of photodetector, polarization angle and physical properties of graphene such as chemical potential and layers. The transmission can be tuned as low as 8.3 ×10-5 when we set the size at 14×6µm and 14×5µm for two different graphene pieces and polarization angle as 0°, at room temperature. This device we designed can absorb Terahertz at a wavelength around 126 µm, which can be used in THz application applied in future high-tech communication or safety inspection.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 814
Author(s):  
Hao Luo ◽  
Qianyi Shangguan ◽  
Yinting Yi ◽  
Shubo Cheng ◽  
Yougen Yi ◽  
...  

In this paper, we design and present a graphene-based “ancient coin”-type dual-band perfect metamaterial absorber, which is composed of a silver layer, silicon dioxide layer, and a top “ancient coin” graphene layer. The absorption performance of the absorber is affected by the hollowed-out square in the center of the graphene layer and geometric parameters of the remaining nano disk. The optical properties of graphene can be changed by adjusting the voltage, to control the absorption performance of the absorber dynamically. In addition, the centrally symmetric pattern structure greatly eliminates the polarization angle dependence of our proposed absorber, and it exhibits good angular polarization tolerance. Furthermore, the proposed “ancient coin”-type absorber shows great application potential as a sensor or detector in biopharmaceutical, optical imaging, and other fields due to its strong tunability and high refractive index sensitivity.


Author(s):  
Hui Xu ◽  
Xiaojing Wang ◽  
Zhiquan Chen ◽  
Xuelei Li ◽  
Longhui He ◽  
...  

Abstract A very simple optical tunable device, which can realize multiple functions of frequency selection, reflection and slow light, is presented at the investigation. The proposed device is constructed by a periodic grating-like structure. There are two dielectrics (graphene and silicon) in a period of the equivalent grating. The incident light will strongly resonate with the graphene of electrostatic doping, forming an evanescent wave propagating along the surface of graphene, and this phenomenon is the surface plasmon. Under constructive interference of the polaritons, a unique plasmonic induced transparency phenomenon will be achieved. The induced transparency produced by this device can be well theoretically fitted by the bright and dark mode of optical equivalent cavity which can be called coupled mode theory (CMT). This theory can well analyze the influence of various modes and various losses between the function of this device. The device can use gate voltages for electrostatic doping in order to change the graphene carrier concentration and tune the optical performance of the device. Moreover, the length of the device in y-direction is will be much larger than the length of single cycle, providing some basis for realizing the fast tunable function and laying a foundation for the integration. Through a simulation and calculation, we can find that the group index and group delay of this device are as high as 515 and 0.257 picoseconds (ps) respectively, so it can provide a good construction idea for the slow light device. The proposed grating-like metamaterial structure can provide certain simulation and theoretical help for the optical tunable reflectors, absorbers, and slow light devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2032
Author(s):  
Fan Gao ◽  
Peicheng Yuan ◽  
Shaojun Gao ◽  
Juan Deng ◽  
Zhiyu Sun ◽  
...  

Electromagnetically induced transparency (EIT) based on dielectric metamaterials has attracted attentions in recent years because of its functional manipulation of electromagnetic waves and high refractive index sensitivity, such as high transmission, sharp phase change, and large group delay, etc. In this paper, an active controlled EIT effect based on a graphene-dielectric hybrid metamaterial is proposed in the near infrared region. By changing the Fermi level of the top-covered graphene, a dynamic EIT effect with a high quality factor (Q-factor) is realized, which exhibits a tunable, slow, light performance with a maximum group index of 2500. Another intriguing characteristic of the EIT effect is its high refractive index sensitivity. In the graphene-covered metamaterial, the refractive index sensitivity is simulated as high as 411 nm/RIU and the figure-of-merit (FOM) is up to 159, which outperforms the metastructure without graphene. Therefore, the proposed graphene-covered dielectric metamaterial presents an active EIT effect in the near infrared region, which highlights its great application potential in deep optical switching, tunable slow light devices, and sensitive refractive index sensors, etc.


Nanoscale ◽  
2018 ◽  
Vol 10 (41) ◽  
pp. 19517-19523 ◽  
Author(s):  
Yonghong Ling ◽  
Lirong Huang ◽  
Wei Hong ◽  
Tongjun Liu ◽  
Jing Luan ◽  
...  

We propose a metamaterial to realize dynamically controllable PIT effect. Simply by changing the polarization direction of incident light, the number of PIT transparency windows can be increased from 1 to 2, accompanied with tunable amplitude and switchable resonance-wavelength.


2021 ◽  
Author(s):  
Li Huang ◽  
Zhongpeng Jia ◽  
Bin Tang

Abstract Black phosphorus (BP), as a new type of two-dimensional material, has drawn considerable interest because of its distinct physics and electronic characteristics. In this work, we theoretically present a BP-based metamaterial, unit cell of which is composed of a rectangular BP nano-patch and two parallel BP strips. The research results indicate that tunable anisotropic plasmon-induced transparency (PIT) effect can be achieved in the presented metamaterials when the polarization of incident light is along armchair and zigzag directions of BP crystal, respectively. Moreover, the spectra responses and group delay accompanied by the PIT effect can be actively controlled by adjusting the carrier density and geometric parameters. The electromagnetic simulation results calculated by finite-difference time-domain (FDTD) method show good agreement with the coupled Lorentz oscillator model. Our proposed nanostructure provides a new path for designing photonic devices such as slow light and photodetector in the mid-infrared region.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 553
Author(s):  
Miao Pan ◽  
Huazhu Huang ◽  
Wenzhi Chen ◽  
Shuai Li ◽  
Qinglai Xie ◽  
...  

In this paper, using the surface plasmon and Fabry–Pérot (FP) cavity, the design of a symmetric silicon grating absorber is proposed. The time-domain finite difference method is used for simulation calculations. The basic unit structure is a dielectric grating composed of silicon dioxide, metal and silicon. Through the adjustment of geometric parameters, we have achieved the best of the symmetric silicon grating absorber. A narrowband absorption peak with an absorption rate greater than 99% is generated in the 3000–5000 nm optical band, and the wavelength of the absorption peak is λ = 3750 nm. The physical absorption mechanism is that silicon light generates surface plasmon waves under the interaction with incident light, and the electromagnetic field coupling of surface plasmon waves and light causes surface plasmon resonance, thereby exciting strong light response modulation. We also explore the influence of geometric parameters and polarization angle on the performance of silicon grating absorbers. Finally, we systematically study the refractive index sensitivity of these structures. These structures can be widely used in optical filtering, spectral sensing, gas detection and other fields.


Nanoscale ◽  
2019 ◽  
Vol 11 (19) ◽  
pp. 9429-9435 ◽  
Author(s):  
Jie Ji ◽  
Siyan Zhou ◽  
Weijun Wang ◽  
Furi Ling ◽  
Jianquan Yao

Active control of terahertz waves is critical to the development of terahertz devices. In this study, we investigated modulation property of terahertz wave based on the hybrid metamaterial/monolayer MoS2/Si structure with tunable infrared light.


Sign in / Sign up

Export Citation Format

Share Document