mixed suspension
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 20)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Manahito Aoki ◽  
Midori Naya ◽  
Shiho Arima ◽  
Kaori Shinohara ◽  
Masahiro Kato ◽  
...  

Abstract Background In clinical practice, a mixed suspension of clopidogrel bisulfate and magnesium oxide (MgO) tablets is administered frequently via a feeding tube. However, there is no report on the changes occurring when suspensions of these two drugs are combined, including the effects or potential decrease in dose following tube administration. Thus, the purpose of our study was to investigate the (i) changes caused by mixing clopidogrel bisulfate (ion form) and MgO tablets and (ii) effects on the administered clopidogrel dose after passing through a feeding tube. Methods The molecular structure of clopidogrel generated in a mixture of clopidogrel bisulfate and a basic compound, such as sodium bicarbonate or MgO tablet, was determined by 1H-NMR after extraction and purification. The suspension of clopidogrel bisulfate tablet alone and the mixed suspension of clopidogrel bisulfate tablet and MgO tablet were passed through a feeding tube. We compared the yield of the molecular form of clopidogrel from each passed fraction. Results The substance obtained from the mixture of clopidogrel bisulfate tablet and sodium bicarbonate or MgO tablet was identified as the molecular form of clopidogrel, and chemical degradation did not occur under these conditions. In the tube passage test, the yield of clopidogrel (molecular form) from the mixture of clopidogrel bisulfate and MgO tablets was lower than that from the suspension of clopidogrel bisulfate tablet alone. Conclusions The mixture of clopidogrel bisulfate and MgO tablets caused a considerable reduction in the administered dose passed through the feeding tube. Therefore, it is recommended to administer the suspensions of clopidogrel bisulfate and MgO tablets separately for safe and effective pharmacotherapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Steven A. Vasilescu ◽  
Shayan Khorsandi ◽  
Lin Ding ◽  
Sajad Razavi Bazaz ◽  
Reza Nosrati ◽  
...  

AbstractThe isolation of sperm cells from background cell populations and debris is an essential step in all assisted reproductive technologies. Conventional techniques for sperm recovery from testicular sperm extractions stagnate at the sample processing stage, where it can take several hours to identify viable sperm from a background of collateral cells such as white bloods cells (WBCs), red blood cells (RBCs), epithelial cells (ECs) and in some cases cancer cells. Manual identification of sperm from contaminating cells and debris is a tedious and time-consuming operation that can be suitably addressed through inertial microfluidics. Microfluidics has proven an effective technology for high-quality sperm selection based on motility. However, motility-based selection methods cannot cater for viable, non-motile sperm often present in testicular or epididymal sperm extractions and aspirations. This study demonstrates the use of a 3D printed inertial microfluidic device for the separation of sperm cells from a mixed suspension of WBCs, RBCs, ECs, and leukemic cancer cells. This technology presents a 36-fold time improvement for the recovery of sperm cells (> 96%) by separating sperm, RBCS, WBCs, ECs and cancer cells into tight bands in less than 5 min. Furthermore, microfluidic processing of sperm has no impact on sperm parameters; vitality, motility, morphology, or DNA fragmentation of sperm. Applying inertial microfluidics for non-motile sperm recovery can greatly improve the current processing procedure of testicular sperm extractions, simplifying the fertility outcomes for severe forms of male infertility that warrant the surgery.


2021 ◽  
Vol 21 (2) ◽  
pp. 757-769
Author(s):  
Kiran Mathew Thomas ◽  
Soojin Kwon ◽  
Richard Lakerveld

2020 ◽  
Vol 10 (15) ◽  
pp. 5140
Author(s):  
Sneha Goel ◽  
Stefan Björklund ◽  
Nicholas Curry ◽  
Sivakumar Govindarajan ◽  
Urban Wiklund ◽  
...  

Thermal spraying deploying liquid feedstock offers an exciting opportunity to obtain coatings with characteristics vastly different from those produced using conventional spray-grade powders. The most extensively investigated variant of this technique is Suspension Plasma Spraying (SPS), which utilizes a suspension of fine powders in an appropriate medium. The relatively recent advent of axial feed capable plasma spray systems can enable higher throughputs during SPS, provides the possibility for spraying with longer stand-off distances, and also permit the use of suspensions with higher solid loading. The present work investigates axial plasma sprayed coatings produced using a mixed suspension of fine (submicron or nano-sized) powders of Al2O3 and YSZ as a case study. Deposition of the mixed suspension using axial injection plasma spraying, comprehensive evaluation of characteristics of the resulting coatings, and assessment of their tribological behavior were of particular interest. Evaluation of surface morphology, microstructure, and hardness of the coatings reveals that axial SPS of mixed suspensions provides an exciting pathway to realize finely structured multi-constituent coatings using suspensions with as high as 40 wt.% solid loading. The study of scratch, dry sliding wear, and erosion behavior also specifically shows that the addition of YSZ in the Al2O3 matrix can improve the tribological properties of the coating.


Sign in / Sign up

Export Citation Format

Share Document