external light source
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 23)

H-INDEX

9
(FIVE YEARS 4)

Author(s):  
riccardo castagna ◽  
Andrea Di Donato ◽  
Giuseppe Strangi ◽  
Daniele Eugenio Lucchetta

Abstract We recorded a permanent phase transmission grating on a thin film made by using a recently developed holographic photomobile mixture. The recorded grating pitch falls in the visible range and can be optically manipulated by using an external coherent or incoherent low power light source. When the external light source illuminates the grating the entire structure bends and, as a consequence, the optical properties of the grating change. This peculiarity makes it possible to use the recorded periodic structure as an all-optically controlled free standing thin colour selector or light switch depending on the source used to illuminate the grating itself. Additionally, it could open up new possibilities for stretchable and reconfigurable holograms controlled by light as well as thin devices for optically reconfigurable dynamic communications and displays.


2021 ◽  
Author(s):  
Bo Liu ◽  
Kun Yang ◽  
Siyu Lu ◽  
Junjie Cai ◽  
Fan Li ◽  
...  

Abstract A novel method for the detection of procalcitonin in a homogeneous system by matched carbon dots (CDs) labeled immunoprobes was proposed based on the principle of FRET and double antibody sandwich method. Blue-emitting carbon dots with a strong fluorescence emission range of 400-550nm and red-emitting carbon dots with the best excitation range of 410-550nm were prepared before they reacted with procalcitonin protoclone antibody pairs to form immunoprobes. According to the principles of FRET, blue-emitting carbon dots were selected as the energy donor and red-emitting carbon dots as the energy receptor. The external light source excitation (310nm) could only cause weak luminescence of CDs. However, once procalcitonin was added, procalcitonin and antibodies would be combined with each other quickly (≤ 20 min). Here, blue-emitting carbon dots acquired energy could be transferred to red-emitting carbon dots efficiently, causing the emitted fluorescence enhancement of red-emitting carbon dots. The fluorescence detection results in PBS buffer solution and diluted rabbit blood serum showed that the fluorescence intensity variation was linear with the concentration of procalcitonin. There was a good linear relationship between F/F0 and procalcitonin concentrations in PBS buffer solution that ranged from 0 to 100ng/ml, and the linear equation was F/F0 = 0.004 * Cpct + 0.98359. Detection in the diluted rabbit serum led to the results that were linear in two concentration ranges, including 0-40ng/ml and 40-100ng/ml, and the detection limit based on 3σ/K was 0.52ng/ml. It’s likely that this matched CDs labeled immunoprobes system can provide a new mode for rapid homogeneous detection of disease markers.


2021 ◽  
Author(s):  
Ki-Cheol Yoon ◽  
Kwang Gi Kim ◽  
Seung Hoon Lee

Abstract The advantage of handheld type surgical microscope is that the size of the probe is small and light, and the working distance(o to 30 cm) and field of view (306°) can be adjusted. Also, a short working distance will minimize the loss of light source energy. However, the currently developed handheld type surgical microscope is still large, heavy, and uses relatively high energy (600 mW). Also, it is not suitable for portable use. To address the aforementioned problems, this study aimed to develop a pen-type surgical fluorescence microscope that is compact, portable, and has an adjustable beam angle and working distance. The pen-type probe consists of a laser diode, CMOS camera, light source brightness control device, filter, and power switch. The IR-cut filter inside the CMOS camera was removed to facilitate transmission of the fluorescence emission wavelength. In addition, a long-pass filter was attached to the camera so that the external light source was blocked and only the fluorescence emission wavelength was allowed to pass through. The pen-type probe was manufactured using 3D printing, and the captured image was designed to be observed through an external monitor. The performance of the pen-type probe was tested through a large animal experiment. Indocyanine green (2.5mg/kg) was injected into a pig's vein. Fluorescence emission of 805-830 nm was achieved by irradiating an external light source (785 nm and 4 mW/cm2), and liver-uptake occurred after 2.4 minutes.


2021 ◽  
Vol 653 ◽  
pp. A153
Author(s):  
David Haack ◽  
Christopher Kreuzig ◽  
Bastian Gundlach ◽  
Jürgen Blum ◽  
Katharina Otto

Aims. The morphology of cometary nuclei is the result of an ongoing evolution and can provide valuable information to constrain the composition of comets. In our laboratory experiments we investigated the morphological evolution of comet analog materials, which consist of volatile, dust, and organic components. The laboratory results are aimed to help understand the evolution of cometary surfaces. Methods. We used spherical particles of fly ash and mixtures of ice, glycine, and sodium acetate as analog materials in different mass ratios to reproduce observed cometary morphologies. The cohesive and gravitational properties in the laboratory are scaled to cometary conditions to draw meaningful conclusions from the experimental results. The samples were placed in a vacuum sublimation chamber, cooled down to below 150 K, and were insolated with an external light source. To analyze the morphology of the samples, a camera was used to monitor the alterations of the surface. Results. Organic components in volatile-rich samples can have a distinct adhesive effect after the volatiles sublimate. During the sublimation process the sample volume decreases and fractures form on the sample surface. Due to the stability of the remaining volatile-depleted material, significant cliff collapses or ejected particles were not observed in the laboratory.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1571
Author(s):  
Jinkyu Kim ◽  
Kicheol Yoon ◽  
Kwanggi Kim

The goal of oncological surgery is to completely remove the tumor. Tumors are often difficult to observe with the naked eye because of the presence of numerous blood vessels and the fact the colors of the tumor and blood vessels are similar. Therefore, a fluorescent contrast medium using a surgical microscope is used to observe the removal status of the tumor. To observe the tumor removal status using a fluorescent contrast agent, fluorescence is expressed in the tumor by irradiating with an external light source, and the expressed tumor can be confirmed through a surgical microscope. However, not only fluorescence-expressed tumors are observed under a surgical microscope, but images from an external light source are also mixed and observed. Therefore, since the surgical microscope is connected to a filter, the quality of the diagnostic image is not uniform, and it is difficult to achieve a clear observation. As a result, an asymmetric image quality phenomenon occurs in the diagnostic images. In this paper, a filter with high clarity that provides a symmetrical observation of diagnostic images is developed and manufactured.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 865
Author(s):  
Yan Qiu ◽  
Ying Guo

A colour-changing garnet exhibits the “alexandrite effect”, whereby its colour changes from green in the presence of daylight to purplish red under incandescent light. This study examines this species of garnets as well as the causes of the colour change by using infrared and ultraviolet visible (UV-Vis) spectroscopy. The infrared spectra show that the colour-changing garnets in this paper belong to the solid solution of pyrope-spessartine type. CIE1931 XYZ colour matching functions are used to calculate the colour parameters influencing garnet colour-changing under different light sources. The UV-Vis spectra show two zones of transmittance, in the red region at 650–700 nm and the blue-green region at 460–510 nm. As they exhibit the same capacity to transmit light, the colour of the gem is determined by the external light source. The absorption bands of Cr3+ and V3+ at 574 nm in the UV-Vis spectra are the main cause of the change in colour. With the increase in the area of peak absorption, the differences in the chroma and colour of the garnet gradually increase in daylight and incandescent light, and it exhibits a more prominent colour-changing effect.


2021 ◽  
Vol 7 (1) ◽  
pp. 140-144
Author(s):  
Sophia Reinhardt ◽  
Joshua Schmidt ◽  
Michael Leuschel ◽  
Christiane Schüle ◽  
Jörg Schipper

Abstract Dizziness is one of the most frequent symptoms in outpatient practices. For the differentiation of peripheral or central pathogenesis of vertigo, history taking and clinical examination with the detection of nystagmus is elementary. The aim of this study was to investigate the effect of lighting for the detection of horizontal vestibular nystagmus while utilizing a conventional webcam. In the proof-of-concept study, caloric induced vestibular nystagmus was recorded with a conventional video-nystagmography and mobile webcam in addition to an external light source. The analysis of recorded data was performed with a self-developed software using computer vision techniques. The self-designed algorithm detected the existence of nystagmus and its direction in several cases. The experimental webcam-based vestibular nystagmography could be enhanced by improving lighting conditions. Currently, a clinical application for this technique is not approved. Further software improvements are necessary to increase its accuracy.


2021 ◽  
Author(s):  
Christoph von Rohden ◽  
Michael Sommer ◽  
Tatjana Naebert ◽  
Vasyl Motuz ◽  
Ruud J. Dirksen

Abstract. The paper presents the Simulator for Investigation of Solar Temperature Error of Radiosondes (SISTER), a setup that was developed to quantify the solar heating of the temperature sensor of radiosondes under laboratory conditions by recreating as closely as possible the atmospheric and illumination conditions that are encountered during a daytime radiosounding ascent. SISTER controls the pressure (3 hPa to 1020 hPa) and ventilation speed of the air inside the windtunnel-like setup to simulate the conditions between the surface and 35 km altitude, to determine the dependence of the radiation temperature error on the irradiance and the convective cooling. The radiosonde is mounted inside a quartz tube, while the complete sensor boom is illuminated by an external light source to include the conductive heat transfer between sensor and boom. A special feature of SISTER is that the radiosonde is rotated around its axis to imitate the spinning of the radiosonde in flight. The characterisation of the radiation temperature error is performed for various pressures, ventilation speeds and illumination angles, yielding a 2D-parameterisation of the radiation error for each illumination angle, with an uncertainty smaller than 0.2 K (k = 2) for typical ascend speeds. This parameterisation is applied in the GRUAN processing for radiosonde data, which relies on the extensive characterisation of the sensor properties to produce a traceable reference data product which is free of manufacturer dependent effects. The GRUAN radiation correction model combines the laboratory characterisation with model calculations of the actual radiation field during the sounding to estimate the correction profile. In the second part of this paper it is described how this procedure was applied in the development of the GRUAN data product for the Vaisala RS41 radiosonde (version 1, RS41-GDP.1). The magnitude of the averaged correction profile increases gradually from 0.1 K at the surface to approximately 0.8 K at 35 km altitude. Comparison between sounding data (N = 154) that were GRUAN-processed and Vaisala-processed reveal that the daytime differences are smaller than +0.1 K (GRUAN – Vaisala) in the troposphere and increase above the tropopause steadily with altitude to +0.35 K (GRUAN – Vaisala) at 35 km. These differences are just within the limits of the combined uncertainties (with coverage factor k = 2) of both data products, meaning that the GRUAN processing and the Vaisala processing are in agreement.


2021 ◽  
Vol 27 (5) ◽  
pp. 278-287
Author(s):  
Muhammad Saleem ◽  
Akira Hosoda

Road infrastructure has witnessed incremental changes in the past as compared to the immense development witnessed by the vehicle’s safety technology. Bott’s dots and other reflector devices are extensively used on the road infrastructure for lane separation and for improving edge detection. These devices come in a large variety of shapes and sizes, however, all of them fall under the category of retroreflectivity since they depend on vehicle lights to provide reflection. Glow-in-the-dark (GiD) material has the benefit that it can store energy during the presence of light and can emit the stored energy in the form of visible light in the absence of an external light source. In this regard, the presented research work details the development and testing of GiD concrete based markers that can be used for lane separation and edge detection. The benefit of the presented innovation is that GiD concrete based markers can be used for visible light instead of retroreflectivity in addition to acting as a driver alertness tool. The durability performance of the presented innovative GiD based raised pavement markers has been presented along with cost comparison to traditional Bott’s dot. In addition, the presented prototype can be adopted for various architectural and esthetical applications in buildings, parks, walkways and bicycle lanes etc.


2021 ◽  
Author(s):  
Omer Adir ◽  
Ravit Abel ◽  
Mia R Albalak ◽  
Lucien E Weiss ◽  
Gal Chen ◽  
...  

Development of regulated cellular processes and signaling methods in synthetic cells is essential for their integration with living materials. Light is an attractive tool to achieve this, but the limited penetration depth into tissue of visible light restricts its usability for in-vivo applications. Here, we describe the synthesis and application of blue-light-generating synthetic cells using bioluminescence, dismissing the need for an external light source. First, the lipid membrane and internal composition of light-producing synthetic cells were optimized to enable high-intensity emission. Next, we show these cells' capacity for triggering bioprocesses in natural cells by initiating asexual sporulation of dark-grown mycelial cells of the fungus Trichoderma atroviride in a quorum-sensing like mechanism. Finally, we demonstrate regulated transcription and membrane recruitment in synthetic cells using bioluminescent self-activating fusion proteins. These functionalities pave the way for deploying synthetic cells as embeddable microscale light sources that are capable of activating engineered processes inside tissues.


Sign in / Sign up

Export Citation Format

Share Document