scholarly journals Motion coordination control of planar 5R parallel quadruped robot based on SCPL-CPG

2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110709
Author(s):  
Mingfang Chen ◽  
Kangkang Hu ◽  
Yongxia Zhang ◽  
Fengping Qi

The parallel leg of the quadruped robot has good structural stiffness, accurate movement, and strong bearing capacity, but it is complicated to control. To solve this problem, a series connection of parallel legs (SCPL) was proposed, as well as a control strategy combined with the central pattern generator (CPG). With the planar 5R parallel leg as the research object, the SCPL analysis method was used to analyze the leg structure. The topology of CPG network was built with the Hopf oscillator as the unit model, and the CPG was the core to model the robot control system. By continuously adjusting the parameters in the CPG control system and changing the connection weight, and the smooth transition between gaits was realized. The simulation results show that the SCPL analysis method can be effectively used in the analysis of parallel legs, and the control system can realize the smooth transition between gaits, which verifies the feasibility and effectiveness of the proposed control strategy.

Author(s):  
Lucas Ginzinger ◽  
Heinz Ulbrich

In this contribution, a new approach to control a rubbing rotor by applying an active auxiliary bearing is presented. The auxiliary bearing is attached to the foundation via two unidirectional actuators. The control force is applied indirectly using the auxiliary bearing, only in case of rotor rubbing. During a normal operation state, the feedback control does not interfere with the rotor system at all. A robust control system has been developed which significantly reduces the intensity of rubbing by stabilizing the rotor system and assuring an optimal rubbing state in case of a too large rotor amplitude. The two-phase control strategy guarantees a smooth transition from free rotor motion to the state of synchronous full annular rub. A test rig has been developed to experimentally verify the control system. Various experiments show the success of the control strategy. In case of rubbing, the contact forces are reduced up to 80 per cent, which results in significantly lower loads. At the same time, the rotor deflection is decreased too. For industrial applications, the activation of the control system can be operated fully automatically. The high efficiency of the control algorithm allows an implementation on microcontrollers. The developed control of the auxiliary bearing reduces the load and the noise of the system during rotor rubbing significantly.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2090
Author(s):  
Yong Zhang ◽  
Hao Wang ◽  
Yi Ding ◽  
Beiping Hou

In this paper, we propose a CPG (central pattern generator) network control system using motor dynamics for the gait planning of a quadruped robot with a trot walking pattern to climb up and down a slope and turn back and follow the symmetry of route. The CPG unit model, which includes two DC motors model, has the ability to generate the periodic joint angle with complex-value parameters. Through plural feedback parameters, the CPG network can adjust the frequency and amplitude of an internal neuron model such as a robot meeting an irregular surface of a road. Using the stride length and frequency of robot joint angles, the distance of walking with a trot pattern can be calculated. In order to confirm the validity of the proposed control system, a quadruped robot is produced to implement the adaptive walking system.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jiupeng Chen ◽  
Hongjun San ◽  
Xing Wu

In order to shorten the research and development cycle of quadruped robot, it is significant to solve the problem of single leg weight-bearing and obtain a smooth gait switching. Firstly, a leg structure with an antiparallelogram is proposed, which greatly enhances the strength and stiffness of the leg in this paper. Secondly, the Simulink-ADAMS cosimulation platform is built and the improved Hopf oscillator is used in the control of robot. This control mode based on CPG realizes the walk and trot gait of quadruped robot. Thirdly, in order to solve the problems of breakpoints, phase-locked, and stopping of gait curve in the process of gait switching by directly replacing the gait matrix, the functional relationship between the right hind leg and duty cycle is introduced to realize the smooth transition of gait curve. The simulation results show that the proposed algorithm can achieve a smooth gait transformation within 4–6 second, which preliminarily proves the feasibility of the algorithm. Finally, the experimental platform is built and the control algorithm is written into the controller to realize the specific gait of the robot, which proves the effectiveness of the proposed method.


2021 ◽  
Vol 13 (11) ◽  
pp. 6388
Author(s):  
Karim M. El-Sharawy ◽  
Hatem Y. Diab ◽  
Mahmoud O. Abdelsalam ◽  
Mostafa I. Marei

This article presents a control strategy that enables both islanded and grid-tied operations of a three-phase inverter in distributed generation. This distributed generation (DG) is based on a dramatically evolved direct current (DC) source. A unified control strategy is introduced to operate the interface in either the isolated or grid-connected modes. The proposed control system is based on the instantaneous tracking of the active power flow in order to achieve current control in the grid-connected mode and retain the stability of the frequency using phase-locked loop (PLL) circuits at the point of common coupling (PCC), in addition to managing the reactive power supplied to the grid. On the other side, the proposed control system is also based on the instantaneous tracking of the voltage to achieve the voltage control in the standalone mode and retain the stability of the frequency by using another circuit including a special equation (wt = 2πft, f = 50 Hz). This utilization provides the ability to obtain voltage stability across the critical load. One benefit of the proposed control strategy is that the design of the controller remains unconverted for other operating conditions. The simulation results are added to evaluate the performance of the proposed control technology using a different method; the first method used basic proportional integration (PI) controllers, and the second method used adaptive proportional integration (PI) controllers, i.e., an Artificial Neural Network (ANN).


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1292
Author(s):  
Hanying Gao ◽  
Guoqiang Zhang ◽  
Wenxue Wang ◽  
Xuechen Liu

The six-phase motor control system has low torque ripple, low harmonic content, and high reliability; therefore, it is suitable for electric vehicles, aerospace, and other applications requiring high power output and reliability. This study presents a superior sensorless control system for a six-phase permanent magnet synchronous motor (PMSM). The mathematical model of a PMSM in a stationary coordinate system is presented. The information of motor speed and position is obtained by using a sliding mode observer (SMO). As torque ripple and harmonic components affect the back electromotive force (BEMF) estimated value through the traditional SMO, the function of the frequency-variable tracker of the stator current (FVTSC) is used instead of the traditional switching function. By improving the SMO method, the BEMF is estimated independently, and its precision is maintained under startup or variable-speed states. In order to improve the estimation accuracy and resistance ability of the observer, the rotor position error was taken as the disturbance term, and the third-order extended state observer (ESO) was constructed to estimate the rotational speed and rotor position through the motor mechanical motion equation. Finally, the effectiveness of the method is verified by simulation and experiment results. The proposed control strategy can effectively improve the dynamic and static performance of PMSM.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110027
Author(s):  
Jianqiang Wang ◽  
Yanmin Zhang ◽  
Xintong Liu

To realize efficient palletizing robot trajectory planning and ensure ultimate robot control system universality and extensibility, the B-spline trajectory planning algorithm is used to establish a palletizing robot control system and the system is tested and analyzed. Simultaneously, to improve trajectory planning speeds, R control trajectory planning is used. Through improved algorithm design, a trajectory interpolation algorithm is established. The robot control system is based on R-dominated multi-objective trajectory planning. System stack function testing and system accuracy testing are conducted in a production environment. During palletizing function testing, the system’s single-step code packet time is stable at approximately 5.8 s and the average evolutionary algebra for each layer ranges between 32.49 and 45.66, which can save trajectory planning time. During system accuracy testing, the palletizing robot system’s repeated positioning accuracy is tested. The repeated positioning accuracy error is currently 10−1 mm and is mainly caused by friction and the machining process. By studying the control system of a four-degrees-of-freedom (4-DOF) palletizing robot based on the trajectory planning algorithm, the design predictions and effects are realized, thus providing a reference for more efficient future palletizing robot design. Although the working process still has some shortcomings, the research has major practical significance.


Sign in / Sign up

Export Citation Format

Share Document