ExPRES Modeling of Auroral Radio Source Occultation observed by Galileo Application to JUICE and Juno

2020 ◽  
Author(s):  
Baptiste Cecconi ◽  
Corentin K Louis ◽  
Claudio Munoz ◽  
Claire Vallat

<p>The ExPRES code simulates exoplanetary and planetary auroral radio emissions. It could be used to predict and interpret Jupiter’s radio emissions in the hectometric and decametric range. In this study, we model the occultations of the Jovian auroral radio emissions during the Galilean moons flybys by the Galileo spacecraft. In this study, we focus on auroral radio emissions, configuring the ExPRES simulations runs with typical radio source physical parameters. We compare the simulations run results with the actual Galileo/PWS observations, and show that we accurately model the temporal occurrence of the occultations in the whole spectral range observed by Galileo. We can then predict auroral radio emission occultations by the Galilean moons for the Juno and JUICE missions. ExPRES will be used by the JUICE/RPWI (Radio Plasma Waves Investigation) team to prepare its operation planning during the Galilean moon flybys for, e.g., the Galilean moon ionosphere characterization science objective, with passive ionospheric sounding during ingress and egress of Jovian radio source occultations. </p>

2019 ◽  
Vol 626 ◽  
pp. L4 ◽  
Author(s):  
B. Morgado ◽  
G. Benedetti-Rossi ◽  
A. R. Gomes-Júnior ◽  
M. Assafin ◽  
V. Lainey ◽  
...  

Context. Bright stellar positions are now known with an uncertainty below 1 mas thanks to Gaia DR2. Between 2019–2020, the Galactic plane will be the background of Jupiter. The dense stellar background will lead to an increase in the number of occultations, while the Gaia DR2 catalogue will reduce the prediction uncertainties for the shadow path. Aims. We observed a stellar occultation by the Galilean moon Europa (J2) and propose a campaign for observing stellar occultations for all Galilean moons. Methods. During a predicted period of time, we measured the light flux of the occulted star and the object to determine the time when the flux dropped with respect to one or more reference stars, and the time that it rose again for each observational station. The chords obtained from these observations allowed us to determine apparent sizes, oblatness, and positions with kilometre accuracy. Results. We present results obtained from the first stellar occultation by the Galilean moon Europa observed on 2017 March 31. The apparent fitted ellipse presents an equivalent radius of 1561.2 ± 3.6 km and oblatenesses 0.0010 ± 0.0028. A very precise Europa position was determined with an uncertainty of 0.8 mas. We also present prospects for a campaign to observe the future events that will occur between 2019 and 2021 for all Galilean moons. Conclusions. Stellar occultation is a suitable technique for obtaining physical parameters and highly accurate positions of bright satellites close to their primary. A number of successful events can render the 3D shapes of the Galilean moons with high accuracy. We encourage the observational community (amateurs included) to observe the future predicted events.


2000 ◽  
Vol 17 (1) ◽  
pp. 22-34 ◽  
Author(s):  
Iver H. Cairns ◽  
P. A. Robinson ◽  
G. P. Zank

AbstractType II and III solar radio bursts are associated with shock waves and streams of energetic electrons, respectively, which drive plasma waves and radio emission at multiples of the electron plasma frequency as they move out from the corona into the interplanetary medium. Analogous plasma waves and radiation are observed from the foreshock region upstream of Earth's bow shock. In situ spacecraft observations in the solar wind have enabled major progress to be made in developing quantitative theories for these phenomena that are consistent with available data. Similar processes are believed responsible for radio emissions at 2–3 kHz that originate in the distant heliosphere, from where the solar wind interacts with the local interstellar medium. The primary goal of this paper is to review the observations and theories for these four classes of emissions, focusing on recent progress in developing detailed theories for the plasma waves and radiation in the source regions. The secondary goal is to introduce and review stochastic growth theory, a recent theory which appears quantitatively able to explain the wave observations in type III bursts and Earth's foreshock and is a natural theory to apply to type II bursts, the outer heliospheric emissions, and perhaps astrophysicalemissions.


2021 ◽  
Vol 655 ◽  
pp. A52
Author(s):  
F. Coti Zelati ◽  
B. Hugo ◽  
D. F. Torres ◽  
D. de Martino ◽  
A. Papitto ◽  
...  

We present the results of simultaneous observations of the transitional millisecond pulsar (tMSP) candidate CXOU J110926.4–650224 with the XMM-Newton satellite and the MeerKAT telescope. The source was found at an average X-ray luminosity of LX ≃ 7 × 1033 erg s−1 over the 0.3−10 keV band (assuming a distance of 4 kpc) and displayed a peculiar variability pattern in the X-ray emission, switching between high, low and flaring modes on timescales of tens of seconds. A radio counterpart was detected at a significance of 7.9σ with an average flux density of ≃33 μJy at 1.28 GHz. It showed variability over the course of hours and emitted a ≃10-min long flare just a few minutes after a brief sequence of multiple X-ray flares. No clear evidence for a significant correlated or anticorrelated variability pattern was found between the X-ray and radio emissions over timescales of tens of minutes and longer. CXOU J110926.4–650224 was undetected at higher radio frequencies in subsequent observations performed with the Australia Telescope Compact Array, when the source was still in the same X-ray sub-luminous state observed before, down to a flux density upper limit of 15 μJy at 7.25 GHz (at 3σ). We compare the radio emission properties of CXOU J110926.4–650224 with those observed in known and candidate tMSPs and discuss physical scenarios that may account for its persistent and flaring radio emissions.


2021 ◽  
Vol 922 (2) ◽  
pp. 197
Author(s):  
Anna Wójtowicz ◽  
Łukasz Stawarz ◽  
Jerzy Machalski ◽  
Luisa Ostorero

Abstract The dynamical evolution and radiative properties of luminous radio galaxies and quasars of the FR II type, are well understood. As a result, through the use of detailed modeling of the observed radio emission of such sources, one can estimate various physical parameters of the systems, including the density of the ambient medium into which the radio structure evolves. This, however, requires rather comprehensive observational information, i.e., sampling the broadband radio continua of the targets at several frequencies, and imaging their radio structures with high resolution. Such observations are, on the other hand, not always available, especially for high-redshift objects. Here, we analyze the best-fit values of the source physical parameters, derived from extensive modeling of the largest currently available sample of FR II radio sources, for which good-quality multiwavelength radio flux measurements could be collected. In the analyzed data set, we notice a significant and nonobvious correlation between the spectral index of the nonthermal radio emission continuum, and density of the ambient medium. We derive the corresponding correlation parameters, and quantify the intrinsic scatter by means of Bayesian analysis. We propose that the discovered correlation could be used as a cosmological tool to estimate the density of ambient medium for large samples of distant radio galaxies. Our method does not require any detailed modeling of individual sources, and relies on limited observational information, namely, the slope of the radio continuum between the rest-frame frequencies 0.4 and 5 GHz, possibly combined with the total linear size of the radio structure.


2013 ◽  
Vol 79 (6) ◽  
pp. 999-1001 ◽  
Author(s):  
DAVID C. SPEIRS ◽  
S. L. McCONVILLE ◽  
K. M. GILLESPIE ◽  
A. D. R. PHELPS ◽  
K. RONALD

AbstractNumerical simulations have been conducted to study the spatial growth rate and emission topology of the cyclotron-maser instability responsible for stellar/planetary auroral magnetospheric radio emission and intense non-thermal radio emission in other astrophysical contexts. These simulations were carried out in an unconstrained geometry, so that the conditions existing within the source region of some natural electron cyclotron masers could be more closely modelled. The results have significant bearing on the radiation propagation and coupling characteristics within the source region of such non-thermal radio emissions.


1980 ◽  
Vol 86 ◽  
pp. 299-302
Author(s):  
T. Takakura

By the use of semi-analytical method, modeling of three kinds of type III solar radio bursts have been made. Many basic problems about the type III bursts and associated solar electrons have been solved showing some striking or unexpected results. If the fundamental radio emissions should be really observed as the normal type III bursts, the emission mechanism would not be the currently accepted one, i.e. the scattering of plasma waves by ions.


2016 ◽  
Author(s):  
Daria Guidetti ◽  
Marco Bondi ◽  
Isabella Prandoni ◽  
R. J. Beswick ◽  
T. W.B. Muxlow ◽  
...  

2020 ◽  
Vol 6 (3) ◽  
pp. 26-32
Author(s):  
Irina Kuzmenko

We have investigated the cause of three “isolated” negative radio bursts recorded one after another at several frequencies in the 1–17 GHz range at the Nobeyama Radio Observatory, Ussuriysk Astrophysical Observatory, and Learmonth Solar Observatory on April 10–11, 2014. The cause of the rarely observed “isolated” negative bursts is the absorption of radio emission from the quiet Sun’s regions or a radio source in the material of a large eruptive filament. Analysis of observations in different spectral ranges using images from the Nobeyama radioheliograph and the Solar Dynamics Observatory/Atmospheric Imaging Assembly has shown that the cause of all the three radio emission depressions was the screening of the limb radio source by the material of recurrent coronal jets. Parameters of the absorbing material were estimated using a previously developed model. These estimates confirmed the absorption of solar radio emission in cold material with a temperature of ~104 K at the bottom of the jets.


Sign in / Sign up

Export Citation Format

Share Document