internal electrolysis
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 1)

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2110
Author(s):  
Tra Huong Do ◽  
Xuan Linh Ha ◽  
Thi Tu Anh Duong ◽  
Phuong Chi Nguyen ◽  
Ngoc Bich Hoang ◽  
...  

The ciprofloxacin (CIP) removal ability of a Fe-Cu electrolytic material was examined with respect to pH (2–9), time (15–150 min), shaking speed (100–250 rpm), material mass (0.2–3 g/L), temperature (298, 308, 323) and initial CIP concentration (30–200 mg/L). The Fe-Cu electrolytic materials were fabricated by the chemical plating method, and Fe-C materials were mechanically mixed from iron powder and graphite. The results show that at a pH value of 3, shaking time 120 min, shaking speed 250 rpm, a mass of Fe-Cu, Fe-C material of 2 g/L and initial CIP concentration of 203.79 mg/L, the CIP removal efficiency of Fe-Cu material reached 90.25% and that of Fe-C material was 85.12%. The removal of CIP on Fe-Cu and Fe-C materials follows pseudo-first-order kinetics. The activation energy of CIP removal of Fe-Cu material is 14.93 KJ/mol and of Fe-C material is 16.87 KJ/mol. The positive ΔH proves that CIP removal is endothermic. A negative entropy of 0.239 kJ/mol and 0.235 kJ/mol (which is near zero and is also relatively positive) indicated the rapid removal of the CIP molecules into the removed products.


2021 ◽  
Vol 23 (2) ◽  
pp. 41-46
Author(s):  
Van Tu Nguyen ◽  
Tra Huong Do ◽  
Duy Nhan Vu ◽  
Tran Thi Kim Ngan

Abstract Untreated coking effluent presents a great challenge for sustainable development of the steel industry and environment preservation. In this study, an internal micro-electrolysis method using Fe/C materials was employed for pretreatment of real coking wastewater with high mass concentration. The Fe/C materials were prepared by Fe powder and graphite powder; and the characteristics of surface morphology, structure, composition of the synthesized materials were examined by Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS). The effects of factors namely dosage of Fe/C material, treatment time, initial pH and temperature were investigated via chemical oxygen demand (COD) and phenol removal efficiencies. Optimal treatment efficiency was attained at pH of 4, Fe/C dosage of 40 g/L, treatment time of 360 minutes and temperature of 25°C. After the internal electrolysis process, the values of COD, BOD5, and phenol of the wastewater were 6500, 4850 and 0.1 mg/L, respectively.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 720
Author(s):  
Do Tra Huong ◽  
Nguyen Van Tu ◽  
Duong Thi Tu Anh ◽  
Nguyen Anh Tien ◽  
Tran Thi Kim Ngan ◽  
...  

Fe-Cu materials were synthesized using the chemical plating method from Fe powder and CuSO4 5% solution and then characterized for surface morphology, composition and structure by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The as-synthesized Fe-Cu material was used for removal of phenol from aqueous solution by internal microelectrolysis. The internal electrolysis-induced phenol decomposition was then studied with respect to various parameters such as pH, time, Fe-Cu material weight, phenol concentration and shaking speed. The optimal phenol decomposition (92.7%) was achieved under the conditions of (1) a pH value of phenol solution of 3, (2) 12 h of shaking at the speed of 200 rpm, (3) Fe-Cu material weight of 10 g/L, (4) initial phenol concentration of 100.98 mg/L and (5) at room temperature (25 ± 0.5 °C). The degradation of phenol using Fe-Cu materials obeyed the second-order apparent kinetics equation with a reaction rate constant of k of 0.009 h−1L mg−1. The optimal process was then tested against real coking wastewater samples, resulting in treated wastewater with favorable water indicators. Current findings justify the use of Fe-Cu materials in practical internal electrolysis processes.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1258
Author(s):  
Do Tra Huong ◽  
Van Tu Nguyen ◽  
Xuan Linh Ha ◽  
Hien Lan Nguyen Thi ◽  
Thi Thoa Duong ◽  
...  

The coal gasification wastewater figures prominently among types of industrial effluents due to its complex and phenolic composition, posing great difficulty for conventional water treatment processes. Since the coking wastewater is toxic and mutagenic to humans and animals, treatment of coal gasification wastewater is genuinely necessary. In this study, we established a lab-scale A2O (Anaerobic-Anoxic—Oxic) with moving bed biological reactor (MBBR) system and evaluated some water indicators of wastewater pretreated with internal electrolysis, of wastewater output of the established A2O-MBBR system, and of the wastewater treated by the combination thereof. The wastewater was taken from a coking plant at Thai Nguyen Iron and Steel Joint Stock Company in Vietnam. COD, BOD5, NH4+-N, phenol, and pH of the input coal gasification wastewater were 2359, 1105, 319, 172 mg/L, and 8 ± 0.1, respectively. The conditions of internal electrolysis were as follows: 720 min of reaction time, pH = 4, 25 g/L Fe-C dosage, and 100 mg/L PAM dosage. After internal electrolysis process, the removal of COD, BOD5, NH4+-N, and phenol were 53.7%, 56.7% 60.5%, and 73.3%, respectively. After 24 h of treatment, the treatment efficiencies of the combined treatment process are as follows: 100% phenol removal, 71.3% of TSS removal; 97.7% reduction of BOD5, and 97.1% reduction of COD; total N content reduced by 97.6%; total P content decreased by 81.6%; and NH4+-N content decreased by 97.5%. All above indicators after treatment have met QCVN 52: 2017/BTNMT (column A) Vietnamese standard for steel industry wastewater.


Chemosphere ◽  
2020 ◽  
Vol 254 ◽  
pp. 126899
Author(s):  
Zhihua Xu ◽  
Yuquan Gao ◽  
Zhenhua Sun ◽  
Daofang Zhang ◽  
Yuwei Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document